首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several sets of porous cellulose acetate membranes were made using the same casting solution composition and gelation conditions but varying the casting solution temperature and solvent evaporation conditions. The films were tested in reverse osmosis experiments at 250 psig using aqueous feed solutions containing 3500 ppm NaCl. The results show that the product rate obtained at a given level of solute separation is independent of evaporation time in the range tested and, for a given casting solution composition, the temperature of the casting solution and conditions of solvent evaporation during film formation together constitute an important interconnected variable governing the porous structure of the resulting membranes. These results offer a new approach to the problem of developing more productive reverse osmosis membranes and have led to a new class of porous cellulose acetate membranes capable of giving product rates 100% to 150% higher than those of the best membranes reported, at any given level of solute separation under the experimental conditions used. These results are of practical importance in low-pressure reverse osmosis applications.  相似文献   

2.
The effects of temperature of casting solution in the range ?10° to 15°C, that of casting atmosphere in the range 10° to 30°C, relative humidity of casting atmosphere in the range 35% to 75%, and solvent evaporation period in the range 0.5 to 3 min were studied on shrinkage temperatures, solute separations, and product rates of Loeb-Sourirajan-type cellulose acetate membranes in reverse osmosis experiments. The composition of casting solution used was as follows: cellulose acetate, 17; acetone, 69.2; magnesium perchlorate, 1.45; and water, 12.35 wt-%. Best performance was obtained with membranes cast under the following conditions: temperature of casting solution, 10°C; temperature of casting atmosphere, 30°C; relative humidity of casting atmosphere, 65%; and solvent evaporation period, 1 min. For a 90% level of solute separation, the productivities of the above type of membranes were 22.9, 61.4, and 64.5 gallons/day-ft2 at 250, 600, and 1500 psig using 3500 ppm NaCl–H2O, 5000 ppm NaCl–H2O, and 28395 ppm NaCl–H2O feed solutions, respectively. In all cases, the feed flow rates corresponded to a mass transfer coefficient of 45 × 10?4 cm/sec on the high-pressure side of the membrane. The general specifications of the above type of membranes are given for the operating pressures of 250, 600, and 1500 psig. The effects of the above casting condition variables on the surface pore structure during film formation are discussed.  相似文献   

3.
The solution structure and evaporation rate constant can be varied by changing the temperature of the casting solution and the temperature of the casting atmosphere for a given film-casting solution composition. The effects of the two temperature changes can be simulated (without changing the two temperatures) by replacing a small part of the solvent (acetone) by a secondary additive in the casting solution. The effect of 20 different secondary additives in the batch 316-type casting solution has been studied and is discussed. Porous cellulose acetate reverse osmosis membranes, capable of giving a 20% to 25% increase in productivity at a 90% level of solute separation for a 3500 ppm NaCl–H2O feed solution at 250 psig, have been produced using 5 wt-% ethyl ether as the secondary additive in the above casting solution. The use of secondary additives offers a new flexibility in the choice of film-casting conditions and in the general development of reverse osmosis membranes.  相似文献   

4.
The effects of casting solution composition and evaporation period on the performance of resulting porous cellulose acetate membranes have been studied, and the results are discussed in terms of casting solution structure, solvent evaporation rate during film formation, and the film shrinkage temperature profile. The development of Batch 316-type porous cellulose acetate membranes is reported. At 90% level of solute separation and feed flow conditions corresponding to a mass transfer coefficient of 45 × 10?4 cm/sec, the productivities of the above membranes are 21.5 gallons/day/ft2 at 250 psig using 3500 ppm of NaCl in the feed, and 53.9 gallons/day/ft2 at 600 psig using 5000 ppm of NaCl in the feed.  相似文献   

5.
6.
Experimental data support the hypothesis that the surface layer of the asymmetric Loeb-Sourirajan type porous cellulose acetate membranes has a heterogeneous microporous structure. A general method is proposed for improving the performance of the above membranes in reverse osmosis, by which product rates are increased without decreasing solute separation. The method consists in pumping pure water past the back side of the membrane under just enough pressure for a sufficiently prolonged period of time; after such pretreatment, the membrane is used in the reverse osmosis experiments in the normal manner with the surface layer facing the feed solution. Back-pressure treatment at 400 psig for 85 hr on preshrunk and normally pressure-treated membranes increases the product rate by over 20% without decreasing solute separation in reverse osmosis experiments at 600 psig with the use of 0.5 wt-% NaCl–H2O feed solutions; with a different sequence of back-pressure treatment, similar results have been obtained in reverse osmosis experiments at 1500 psig also. The compaction effect of a normal membrane and that of a back pressure treated membrane are the same during continuous reverse osmosis operation under 600 psig; the effects of back-pressure treatment on a normal membrane and a compacted membrane are also the same. The pure water permeability data obtained in cyclic experiments show that the smaller pores on the surface layer are opened more than the bigger ones during the back side operation. The probable structural changes taking place in the film during back-pressure treatment are discussed.  相似文献   

7.
A two-stage method of making semi-permeable high flux reverse osmosis membranes was developed using water-ethanol mixtures to precipitate the cellulose acetate. This eliminated the need for heat treatment and produced membranes with fluxes up to 5 m3/m2 day and sodium chloride rejections up to 85 %. Their properties are compared with membranes made by the three-stage method involving heat treatment and show more sensitivity to the effects of pressure.  相似文献   

8.
An improved apparatus is described for making tubular cellulose acetate membranes for reverse osmosis and ultrafiltration applications. The incorporation of an adjustable centering-bob and a sleeve in the design of the casting-bob housing, and the inclusion of an automatically controlled electrical water probe at the bottom of the casting-bob are the novel features of the apparatus. The adjustable centering-bob offers the capability of regulating the passage for the flow of the casting solution during film casting; this capability makes the casting-bob housing useful for a wide range of casting solution viscosities necessary for making both reverse osmosis and ultrafiltration membranes. The sleeve incorporated in the design makes it possible to switch from one tube-casting to the next immediately without any need for the intermediate time consuming operation of cleaning up the casting-bob system. Thus a single casting-bob housing is sufficient for making a plurality of membranes, one after another, with little loss of time between castings. The water probe maintains in the casting tube any desired length of air-zone for the freshly cast membrane. The operation of the apparatus is amenable to a high degree of automation. These features make the apparatus particularly suitable for industrial utilization.  相似文献   

9.
A physicochemical parameter, represented by the symbol Σs*, based on molar solubility in water and molar attraction constants of Small, has been developed to express quantitatively the relative hydrophobicity, or nonpolar character, of the hydrocarbon molecule. The value of Σs* can be calculated for a hydrocarbon from its chemical structure. The scale of Σs* is consistent within each group of aromatic, cyclic, and noncyclic hydrocarbons. Reverse osmosis data have been obtained at 250 psig for single-solute aqueous feed solution systems involving low concentrations of 39 different hydrocarbons (including 13 aromatics, 10 cyclic, and 16 noncyclic compounds) and several samples of cellulose acetate membranes of different surface porosities. The effect of operating pressure on membrane performance has also been studied for two aromatic hydrocarbon solutes. The values of Σs* for the solutes used were in the range of 425 to 924 for aromatic hydrocarbons, 521 to 931 for cyclic hydrocarbons, and 369 to 960 for noncyclic hydrocarbons. The reverse osmosis data have been correlated with Σs* for each group of hydrocarbons studied. In all cases, positive solute separations were obtained, and the ratio [PR]/[PWP] was less than 1. With respect to each film, solute separation increased with increase in Σs*, and decreased with increase in operating pressure. Also, solute separation decreased in the order aromatic hydrocarbon > cyclic hydrocarbon > noncyclic hydrocarbon at any given value of Σs*. At a given operating pressure, for low values of Σs* (~500 or less) solute separation increased with progressive decrease in average pore size on the membrane surface. For high values of Σs* (~800 or more), solute separation initially increased with decrease in average pore size, then passed through a maximum and minimum with further decrease in average pore size, and again increased with still further decrease in average pore size. The results are discussed on the basis of preferential sorption of solute at the membrane–solution interface under the experimental conditions studied.  相似文献   

10.
Reverse osmosis separations of phenol (9.4 to 108 ppm), p-cresol (108 ppm), and p-chlorophenol (129 ppm) were studied using Loeb-Sourirajan-type porous cellulose acetate membranes, and single-solute aqueous feed solutions at 500 psig and the indicated solute concentrations. It was found that, by dissociating the solute by changing the pH of the feed solution, all the above phenols could be separated by reverse osmosis. Solute separation increased with increase in the degree of dissociation of the solute in the feed solution; and, by the appropriate choice of pore size on the membrane surface, separations of phenol approaching the degree of dissociation of phenol in the feed solution could be obtained under the operating conditions used. Similar experiments using aniline (93 ppm) as the solute showed that dissociation of solute molecules in the feed solution could be a technique generally applicable for the reverse osmosis separation of nonionic solutes in aqueous solution. The effects of operating pressure in the range 250 to 1500 psig and pore size on the membrane surface on the separation of un-ionized phenol and p-chlorophenol showed that, with respect to single-solute aqueous feed solutions of phenols, the component whose relative acidity was greater was preferentially sorbed at the cellulose acetate membrane—aqueous solution interface, and the solute concentration in the membrane-permeated product solution was a function of the extent and mobility of each of the sorbed species.  相似文献   

11.
Data on reverse osmosis separations have been obtained for 12 alkali metal halide solutes and 24 organic solutes (including eight alcohols, four aldehydes, seven ketones, and five ethers) with cellulose acetate propionate (CAP) membranes using single-solute dilute aqueous feed solutions at 250 psig. From the analysis of these data, the parameters and correlations needed to calculate the values of solute transport parameter DAM/Kδ for the above classes of inorganic and organic solutes for a CAP membrane of any surface porosity from data on DAM/Kδ for NaCl only have been generated. These parameters and correlations enable one to predict reverse osmosis separations of different solutes included in the classes of compounds studied in this work, from a single set of experimental data on membrane specifications given in terms of pure water permeability constant and DAM/Kδ for NaCl. The reverse osmosis characteristics of CAP material lie intermediate between those of cellulose acetate and aromatic polyamide materials reported in the literature.  相似文献   

12.
Reverse osmosis data using different samples of Loeb-Sourirajan-type porous cellulose acetate membranes and single-solute aqueous solution systems involving 16 monohydric alcohols, 4 phenols, 18 polyhydric alcohols, pyrogallol, ethylene glycol monoethyl ether, 6 aldehydes, and 8 carbohydrates (sugars) have been studied. The solute concentrations used were in the range of 0.0005 to 0.003 g mole/l. (~100 ppm), and operating pressure used was 250 psig in all cases. The results show that correlations of acidity and basicity parameters (obtained from IR spectra) with solute separation data are equivalent, and they have predictive capability. A method is given for estimating Taft numbers (Σσ*) for monohydric and polyhydric alcohols from available data based on the additive nature of σ*. Data on solute transport parameters (DAM/Kδ) for the different solutes were calculated from membrane performance data. For all the alcohols studied, the Σσ*-versus-log (DAM/K)δ correlation was found to be a straight line with a slope different for different ranges of Σσ*, but independent of the porous structure of the membrane. Based on this result, it is shown that the parameters of the Taft equation can serve as a basis for expressing solute transport parameter, and this basis offers a means for predicting membrane performance for all alcohol–water systems from a single set of experimental data for a reference solute system. This prediction technique is illustrated using experimental data for 1,3-butanediol taken as the reference solute. The general applicability of the technique has been tested for predicting the separation of some aldehydes and carbohydrates.  相似文献   

13.
The electret potentials developed by reverse osmosis electret membranes help control the undesirable deposition of charged colloidal particles on the membrane surfaces during membrane desalination. These antifouling electret membranes should help prevent the costly flux declines normally associated with deposition of colloidal iron oxides on the reverse osmosis membrane surfaces. Homocharge and heterocharge behavior of cellulose acetate membrane electrets have been studied. Asymmetric reverse osmosis membranes and dense membrane films were studied. The homocharge and heterocharge of cellulose acetate reverse osmosis electret membranes have been explained.  相似文献   

14.
The performance of cellulose acetate reverse osmosis membranes for desalination or purification is greatly affected by the microstructure of the membrane. It is, therefore, highly desirable to characterize the microstructure and its dependence on preparation conditions and past history. In this study, various types of cellulose acetate powders, flakes, and solvent cast films have been characterized by differential scanning calorimetry and thermo-optical analysis. It is shown that ordered microstructures exist in many of these samples and that this ordering can be intensified or diminished by suitable treatments. It is conjectured that a similar microordering occurs in the dense layer of asymmetric cast membranes as a result of solvent evaporation, gelation and annealing and that the extent of orientation and chain packing in the ordered regions greatly affects the performance of reverse osmosis membranes.  相似文献   

15.
Using a modified form of the Born expression for the free energy of ion-solvent interaction, to both the bulk solution phase and the membrane–solution interface, a parameter is obtained to express the repulsion of the ion at the interface. This parameter, called the free energy parameter for ions, is then related to solute transport parameter obtained from reverse osmosis experiments. Numerical values of this free energy parameter have been obtained for six monovalent and four divalent cations and for 12 monovalent anions. Using the experimental data for the reverse osmosis separation of sodium chloride as reference, the utility of the above parameter for predicting solute separation in reverse osmosis is illustrated for 32 other inorganic salts.  相似文献   

16.
Reverse osmosis data obtained using porous cellulose acetate membranes and aqueous feed solutions involving one of 22 monocarboxylic acids, seven dicarboxylic acids, and four hydroxycarboxylic acids have been analyzed. The operating pressure used was 250 psig in all cases, and the solute concentration used was ~100 ppm in most cases. The results yield the following physicochemical criteria for preferential sorption at the membrane–solution interface with respect to the un-ionized acid. At pKa = 4.2 (for monocarboxylic acids), or Taft number (σ*) = 0.6 or Hammett number (σ) = 0, neither the un-ionized acid nor water is preferentially sorbed at the membrane–solution interface; at pKa < 4.2 (for monocarboxylic acids) or σ* > 0.6 or σ > 0, the un-ionized acid is preferentially sorbed at the membrane–solution interface. For practical purposes, preferential sorption of water at the membrane–solution interface may be considered negligible in the σ* region of 0 to 0.6. The results also show that the criterion of acidity of the molecule governing the extent of its repulsion or attraction at the membrane–solution interface is valid for both ionized and un-ionized acid. Further, when the acid molecule contains three or more straight-chain carbon atoms not associated with a ? COOH group, the nonpolar character of the molecule also affects its separation in reverse osmosis.  相似文献   

17.
18.
Polar and steric effects together govern the reverse osmosis separation of amino acids in single-solute aqueous solution systems. The solute transport parameter for the completely ionized aliphatic amino acids (with no additional polar groups other than one ? NH2 and one ? COOH) in the pK1 range of 4.03 to 1.71 can be represented as a function of pK1 and the steric parameter ΣEs. The latter parameter has a relatively greater influence with respect to the separation of zwitter ions. The effect of the polar parameter pK1 on solute separation increases with increase in the concentration of the ionic species R+ (or decrease in the concentration of the ionic species R?) in the feed solution. The effect of the presence of additional polar groups in the amino acid molecule is to increase its basicity. Experiments with p-aminobenzoic acid solutions indicate that the undissociated acid is preferentially sorbed at the membrane–solution interface. With respect to both aliphatic and aromatic amino acid ions, solute separation is in the order R? > R± > R+ for the cellulose acetate membrane material studied.  相似文献   

19.
Reverse osmosis data on two different cellulose acetate membranes using seven organic solutes of varying molecular weight have been obtained.A combined viscous-flow and frictional model is presented and used to estimate the maximum retention, the friction between solute and membrane, the distribution coefficient for solute and the pore radius.The calculated values of the maximum retention and distribution coefficient have been compared with the Ferry-Faxen equation. For the more open membrane these are in good agreement. The tighter one, however, shows a greater interaction between solute and membrane than predicted by the Faxen equation.Some data on two-solute systems are presented and shown to give variation in the retention, which can be explained from the convection term.Furthermore, for experiments with dextran the permeate shows a significant reduction in both Mn and Mt  相似文献   

20.
This study illustrates the analytical techniques involved in specifying the membrane and outlines the procedure for predicting the reverse osmosis (RO) performance of these membranes using feed solutions, containing either single solutes or mixed electrolytes having a common ion. The scientific basis for such specification and prediction techniques has been extensively discussed in the literature. In the present work, the governing transport equations for RO systems, involving preferential sorption of water at the membrane–solution interface, are utilized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号