首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
传感器特种光纤   总被引:1,自引:0,他引:1  
本文较全面地介绍了用于光纤传感器的各种光纤,开发传感器特种光纤的主要技术途径,制作工艺及传感特性。它包括声学敏感光纤、磁敏光纤、低双折射光纤、圆双折射光纤、椭圆双折射光纤、线性双折射光纤、保偏光纤、偏振光纤、稀土离子掺杂光纤及特种材料多组份光纤及光纤光栅等。  相似文献   

2.
领结型和椭圆型保偏光纤的应力和模式分析   总被引:4,自引:0,他引:4  
应用有限元方法对领结型和椭圆型保偏光纤的热应力双折射特性和模式双折射进行了分析,给出了这两种保偏光纤的应力和双折射分布规律.对领结型保偏光纤,研究了纤芯的双折射和模式双折射随着应力区离纤芯距离的变化规律;对椭圆型保偏光纤,研究了纤芯的应力双折射和模式双折射随包层椭圆度的变化规律;分析了光纤应力区结构对纤芯双折射大小和均匀性的影响,并将应力诱导双折射与模式理论计算结果进行了比较.  相似文献   

3.
提出了一种制作偏振保持光纤(PMF)的预制棒侧向开槽法,制作了波长1550 nm处双折射为7.75×10-5的边孔光纤和双折射为5.345×10-4的单模熊猫光纤.用有限元法分析熊猫光纤应力分布表明,掺B应力施加区(SAP)的引入使得光纤横截面上出现了应力分量的拉应力区和压应力区;在纤芯以及其附近区域应力的x分量取正值,y分量取负值,造成了大应力差;SAP距离纤芯越近,双折射越大,距离一定时,对纤芯中心张角为90°时双折射最大.  相似文献   

4.
提出并研究了一种基于乙醇灌注边孔光纤(SHF)的Sagnac干涉型温度传感器。边孔光纤是一种高双折射光纤,其包层中纤芯两侧具有两个空气孔。将乙醇填充进边孔光纤的空气孔中,利用乙醇的折射率随温度的变化,改变边孔光纤的双折射系数,使Sagnac干涉仪的输出谱发生波长漂移,从而实现了温度传感。实验获得该传感器在20℃~80℃的温度变化范围内灵敏度为86.8pm/℃,为普通光纤布拉格光栅(FBG)传感器的8倍。  相似文献   

5.
高压力光子晶体光纤传感器系统的研究   总被引:2,自引:1,他引:1  
光子晶体光纤(PCF)压力传感器可广泛用于各种环境压力监测中.采用全矢量有限元方法对双芯光子晶体光纤的双折射特性进行了分析,采用二阶微分方程理论模型模拟了光子品体光纤高压力传感器对外界压力的响应,并应用这个模型讨论了外界压力作用对敏感元件有效折射率和双折射的影响,提出了一种高压力光子晶体光纤传感器方案.计算结果表明高压力致双空气孔芯光子晶体光纤的双折射值可达很高,光子晶体光纤传感器系统更为简洁紧凑.  相似文献   

6.
简单介绍了保偏光纤的应力双折射,并着重介绍了应用有限元法对"一"字型与熊猫型结构保偏光纤的应力双折射的对比分析.分析结果表明,对"一"字型而言,纤芯区的双折射在一定范围内随应力区的长度及宽度加大而增大;在相同剖面结构参数条件下,"一"字型光纤应力区对双折射的贡献约为熊猫型光纤的1.3倍;无论是何种结构的保偏光纤,缩小应力区与纤芯之间的距离是增大纤芯区双折射更为有效的途径.同时对保偏光纤结构优化的趋势进行了展望.  相似文献   

7.
建立了空芯带隙型光子晶体光纤残余双折射理论分析模型,采用全矢量有限元法研究了光纤残余双折射产生的原因,最后搭建实验平台对空芯带隙型光子晶体光纤的残余双折射进行测试,并对光纤双折射的波长依赖性和温度稳定性进行了探究.仿真与实验结果表明,纤芯残余形变是导致残余双折射的重要因素,残余双折射随纤芯椭圆率的增大而增大,同时残余双折射的波长依赖性显著,温度依赖系数为0.3×10-9/℃.  相似文献   

8.
提出了一种计算任意形状应力区的光纤在纤芯处的应力场分布和双折射大小的应力微元积分计算方法。采用COMSOL Multiphysics软件中的固体力学模块,研究了矩形、方形、三角形、圆等不同形状微元应力区光纤在纤芯处应力场和双折射的大小。结果表明,应力微元面积相同时,其在纤芯处引起的应力大小及其双折射与应力微元的形状、放置方向无关,只与应力微元到纤芯的距离有关。当应力微元与纤芯距离较近时,应力大小和双折射与距离近似呈平方反比关系。该结果验证了应力微元分析方法的正确性和可行性。因此对应力微元进行积分,即可得到任意形状应力区光纤在纤芯处的应力场分布与双折射。  相似文献   

9.
传感光纤中的残余线性双折射、温度和振动敏感性严重影响着Sagnac 式全光纤电流传感器的精度。设计了一种可用于全光纤电流传感器的扭转高双折射光纤,该光纤由两端变速率扭转部分和中间匀速率扭转部分组成。其中,变速扭转部分能实现线偏振光和圆偏振光之间的相互转化,具有/4 波片功能;匀速扭转部分,具有较小的光纤固有线性双折射和圆保偏功能,从而可更为精确地感应法拉第效应。将这种扭转高双折射光纤绕制成特殊结构传感光纤环, 解决了Sagnac 效应以及电流导体位置对全光纤电流传感器测量结果的影响。理论上建立了扭转高双折射光纤的耦合模方程,模拟了线偏振光入射该光纤时光波偏振状态演化情况。在此基础上设计一种新型的抗振型Sagnac 式电流传感器。  相似文献   

10.
类矩形保偏光纤应力双折射分析   总被引:2,自引:0,他引:2  
采用有限元方法对“类矩形”保偏光纤的应力双折射进行了分析,给出了保偏光纤横截面上的应力分布图形及应力双折射分布曲线;应用全矢量电磁场有限元方法,计算了保偏光纤的两个偏振模场的分布、传输常数及模式双折射.在给定模拟条件下,纤芯的应力双折射约为 3. 33×10-4,其模式双折射约为 3. 72×10-4.计算结果表明,这种“类矩形”保偏光纤与其它保偏光纤相比,有几个明显的优点,即有更佳的应力传递效果、均匀的应力场分布、更大的应力双折射.  相似文献   

11.
中红外光纤激光器的研究进展   总被引:1,自引:0,他引:1  
中红外光纤激光器因其特殊的输出波长和良好的光束质量,在军事、大气通信、生物医疗等领域有着广泛的应用前景。从不同掺杂稀土离子的角度介绍了氟化物玻璃和硫化物玻璃中红外光纤激光器的工作原理和结构,并阐述了国内外最新的研究进展。同时,介绍了本研究小组在中红外光纤激光器方面的研究工作及取得的最新成果。最后,对中红外光纤激光器的发展前景进行了展望。  相似文献   

12.
比较了关于光子晶体光纤的水平论述和关于靶向设计的极宽频带三包层单模光纤的观点。基于宏观麦克斯韦方程建立物理模型,提出了靶向设计方法。估算了极宽频带三包层单模光纤批量生产可以接受的公差。研究了服务于宽带中国国家战略的极宽频带光纤和极宽带通信系统。讨论了我国光纤产业的三项目标。  相似文献   

13.
给出了一种分析分布式掺铒光纤放大器的理论方法,可以对放大器的信号增益和泵浦吸收进行分析,并能够为分布式掺铒光纤放大器的设计提供理论依据。通过推导得出了基本公式,并就一些特殊情况作了讨论。该方法适用于1480nm和980nm泵浦的放大器系统。  相似文献   

14.
利用普通熔融拉锥机实现光子晶体光纤拉锥   总被引:2,自引:0,他引:2       下载免费PDF全文
光子晶体光纤的拉锥是实现光子晶体光纤潜在应用价值的重要技术手段。通过优化普通光纤拉锥机的参数,利用"快速低温"拉锥法有效控制了光子晶体光纤空气孔的相对塌缩。实验中实现了两种不同光子晶体光纤的拉锥,光纤外径分别从原来的125μm拉锥到50μm和30μm,光纤的孔直径和孔间距之比基本保持不变,拉锥损耗小于0.4 dB。基于普通熔融拉锥机的光子晶体光纤低损耗拉锥为光纤器件的制作奠定了基础。  相似文献   

15.
原荣 《光通信技术》2003,27(2):51-54
首先介绍光纤结构和类型,然后阐述光纤传输的原理、特性和应用.  相似文献   

16.
从改变有效折射率、光栅常数及同时改变有效折射率与光栅常数三个方面介绍啁啾光纤光栅成栅技术,并分析讨论每种技术的特点。  相似文献   

17.
结构稳定的掺Er3+光纤环形腔激光器   总被引:2,自引:1,他引:1  
报道了一种腔体结构稳定的掺Er3+光纤环形腔激光器的激光输出特性。用976nm半导体激光器作为泵浦源,采用偏振不灵敏型光纤隔离器(P-InsensitiveISO,环形腔内分别采用和不采用光纤偏振控制器),产生了最大功率为0.94mW和0.33mW,波长分别为1.5581μm,1.536μm稳定的激光输出。  相似文献   

18.
提出了河北移动城市光纤网络建设的总体策略,引出了综合业务引入光纤配比的两种不同的方式以及光缆交接箱和用户光纤及光缆的选择策略,在此基础上提出了基于客户数量和客户业务种类的方式来建光纤配比模型及相关的计算公式.  相似文献   

19.
光纤激光器   总被引:2,自引:1,他引:1  
近年来光纤激光器得到了迅速发展。本文简要介绍了光纤激光器的基本原理和特点,并对其进行了较为详细的分类。最后指出了光纤激光器在光通信、工业加工、医疗等领域的应用及其未来的发展方向。  相似文献   

20.
光子晶体光纤的传输性能   总被引:1,自引:0,他引:1  
文章首先提出了石英玻璃单模光纤在高速率、大容量和远距离光纤通信中应用时存在的问题,然后在介绍光子晶体光纤的结构特点、导光机理的基础上,简要地阐述了光子晶体光纤的研究历史和最新研究成果;最后综述了光子晶体光纤的衰减、色散和非线性效应等传输性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号