首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Jemez Mountains volcanic field (JMVF), located in north-central New Mexico, has been a site of basaltic to rhyolitic volcanism since the mid-Miocene with major caldera forming eruptions occurring in the Pleistocene. Eruption of the upper Bandelier Tuff (UBT) is associated with collapse of the Valles Caldera, whereas eruption of the lower Bandelier Tuff (LBT) resulted in formation of the Toledo Caldera. These events were previously dated by K-Ar at 1.12 ± 0.03 Ma and 1.45 ± 0.06 Ma, respectively. Pre-Bandelier explosive eruptions produced the San Diego Canyon (SDC) ignimbrites. SDC ignimbrite “B” has been dated at 2.84 ± 0.07 Ma, whereas SDC ignimbrite “A”, which underlies “B”, has been dated at 3.64 ± 1.64 Ma. Both of these dates are based on single K-Ar analyses.40Ar/39Ar dating of single sanidine crystals from these units indicates revision of the previously reported dates. Isochron analysis of 26 crystals from the UBT gives a common trapped 40Ar/36Ar component of 304.5, indicating the presence of excess 40Ar in this unit, and defines an age of 1.14 ± 0.02 Ma. Isochron analysis of 26 crystals from the LBT indicates an atmospheric trapped component and an age of 1.51 ± 0.03 Ma. An age of 1.78 ± 0.04 Ma, based on the weighted mean of 5 individual analyses, is indicated for SDC ignimbrite “B”, whereas 3 analyses from SDC ignimbrite “A” give a weighted mean age of 1.78 ± 0.07 Ma. Evidence for xenocrystic contamination in the SDC ignimbrites comes from analyses of a correlative air-fall pumice unit in the Puye Formation alluvial fan giving ages of 1.75 ± 0.08 and 3.50 ± 0.09 Ma. The presence of xenocrysts in bulk separates used for the original K-Ar analyses could account for the significantly older ages reported.Geochemical data indicate that SDC ignimbrites are early eruptions from the magma chamber which evolved to produce the LBT, as compositions of SDC ignimbrite “B” are virtually identical to least evolved LBT samples. Differentiation during the 270-ka interval between eruption of SDC ignimbrite “B” and the LBT produced an array of high-silica rhyolite compositions which were erupted to form the LBT. Mixed pumices associated with eruption of the LBT indicated an influx of more mafic magma into the system which produced shifts in some incompatible trace-element ratios. Lavas and tephras of the Cerro Toledo Rhyolite record the geochemical evolution of the Bandelier magma system during the 370-ka interval between eruption of the LBT and the UBT.The combined geochronologic and geochemical data place the establishment and evolution of the Bandelier silicic magma system within a precise temporal framework, beginning with eruption of the SDC ignimbrites at 1.78 Ma, and define a periodicity of 270–370 ka to ash-flow eruptions in the JMVF. These intervals are comparable to those in other multicyclic caldera complexes and are a measure of the timescales over which substantial fractionation of large silicic magma bodies occur.  相似文献   

2.
A conspicuous graben extends for 800 kilometers through El Salvador and western Nicaragua to the Caribbean Sea in northeastern Costa Rica. Like the smaller but structurally similar Semangko and Toba Depressions of northern Sumatra, the trough is clearly related to voluminous volcanic eruptions during Late Tertiary time. In the region around Lakes Managua and Nicaragua, where the depression is best defined and reaches its greatest dimension, a thick series of Tertiary sediments and volcanic rocks provides a means of interpreting the Cenozoic history of the region. Following a long period of intermittent volcanic activity and sedimentation, extensive sheets of andesitic and dacitic ignimbrites were erupted during Late Miocene time from fissure sources which appear to have been located near the now-subsided central portion of the graben. Near the coast, ignimbrites flowed across a flat lagunal shore overwhelming and burying the tropical vegetation and finally coming to rest in shallow water. Unusual textures and chaotic mixtures of pumice with sediments and silicified wood characterize the bases of many of the water-laid ignimbrites. Subsidence of the graben does not appear to have occurred concurrently with the ignimbrite eruptions but followed them closely near the end of the Miocene or the beginning of Pliocene time. Subsequent activity has been confined to relatively smaller eruptions from central vents near the boundary faults of the graben.  相似文献   

3.
Cenozoic volcanic activity started in southwestern Bolivia during the Oligocene. From the Early Miocene up to the Holocene, volcanism produced about 8000 km3 of lavas and pyroclastic rocks. Five major cycles could be distinguished.North—south-trending fissures in the eastern part of southwestern Bolivia were sources of Miocene ignimbrites. The eruptive centers of Pliocene ignimbrites are scattered throughout the investigated area, but are concentrated in the western part. During Pleistocene times small ignimbrite flows were formed by collapse of composite volcanoes.The oldest lavas (Oligocene) are alkaline and differ considerably from younger rocks, which are rhyodacites and dacites with only a small limited range of compositions. Based on the K2O/Na2O ratios and the mineralogical composition, the lavas can be subdivided into a calc-alkaline and a high-K calc-alkaline (shoshonitic) association. Hornblende is absent from lavas with high K2O/Na2O ratios.In southwestern Bolivia a westward migration of volcanic activity is apparent. The potassium content of the lavas decreases from the Miocene to the Holocene, whereas the sodium content increases. The potassium content cannot, therefore, be correlated with the depth of the Benioff zone. It is suggested, that the lavas and ignimbrites were formed by partial melting of material from different crustal levels.  相似文献   

4.
Potassium-argon dating of volcanic and plutonic rocks in the Andean region of central Chile has revealed previously unrecognized episodes of igneous activity during Cretaceous and Cenozoic time. These results indicate the need to re-evaluate the classic stratigraphic subdivisions that have evolved on lithologic rather than time-stratigraphic criteria.Four radiometric age groups have been identified in the coast range volcanic belt:
1. (1) Las Chilcas Formation — Early Cretaceous continental volcanic strata (120-110 m.y.).
2. (2) Lo Valle Formation — Late Cretaceous continental volcanic strata (78-65 m.y.).
3. (3) Late Oligocene extrusive volcanics (31-28 m.y.).
4. (4) Early Miocene intrusive volcanics (20.6–19.5 m.y.).
Two radiometric age groups have also been identified in the adjacent Andean Cordillera:
1. (1) Farellones Formation — continental volcanic strata (18.5–17.3 m.y.).
2. (2) Early Pliocene extrusive volcanics (5-4 m.y.).
An older group of continental volcanic strata in the Andes represented by the Abanico Formation remains undated but is intruded by plutons dated at 19.5 and 24 m.y.Available chronologic evidence indicates that volcanic activity moved eastward from the coast range volcanic belt to the Andean Cordillera between 20 and 18 m.y. ago and remained there to the present time.  相似文献   

5.
High spatial resolution U–Pb dates of zircons from two consanguineous ignimbrites of contrasting composition, the high-silica rhyolitic Toconao and the overlying dacitic Atana ignimbrites, erupted from La Pacana caldera, north Chile, are presented in this study. Zircons from Atana and Toconao pumice clasts yield apparent 238U/206Pb ages of 4.11±0.20 Ma and 4.65±0.13 Ma (2σ), respectively. These data combined with previously published geochemical and stratigraphic data, reveal that the two ignimbrites were erupted from a stratified magma chamber. The Atana zircon U–Pb ages closely agree with the eruption age of Atana previously determined by K–Ar dating (4.0±0.1 Ma) and do not support long (>1 Ma) residence times. Xenocrystic zircons were found only in the Toconao bulk ignimbrite, which were probably entrained during eruption and transport. Apparent 238U/206Pb zircon ages of 13 Ma in these xenocrysts provide the first evidence that the onset of felsic magmatism within the Altiplano–Puna ignimbrite province occurred approximately 3 Myr earlier than previously documented.  相似文献   

6.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

7.
 The Woods Mountain volcanic center is a well-exposed, mildly alkaline volcanic center that formed during the Miocene in southeastern California. Detailed geologic mapping and geochemical studies have distinguished three major volcanic phases: precaldera, caldera forming, and postcaldera. Geologic mapping indicates that caldera formation occurred incrementally during eruptions of three large ignimbrites and continued into a period of voluminous intracaldera lava-flow eruptions. Rhyolitic ignimbrites and lava flows within the caldera are associated with large amplitude, circular gravity, and magnetic minima that are among the most prominent gravity and magnetic anomalies in southeastern California. Analysis of a Bouguer gravity anomaly map, reduced-to-the-pole magnetic intensity map, and three-dimensional gravity and magnetic models indicates that there is a single, funnel- to bowl-shaped caldera approximately 4 km thick and approximately 10 km wide at the surface. This model is consistent with other siliceous, pyroclastic-filled calderas on continental crust, except that most siliceous volcanic centers associated with more than one eruption are characterized by more than one caldera. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

8.
Sixty-six K---Ar dates from igneous rocks in the central Chilean Andes between 33° and 38°S are reported in this study. From these results and observed field relations, major Cenozoic volcanic and intrusive rock units are divided into chronologic groups representing igneous events.Volcanic units of Oligocene (33.3–27.9 m.y.) and Early Miocene (20.2 m.y.) age have been dated west of the present range at 33°S but neither the magnitude nor extent of these volcanic events has yet been established. Extensive Middle to Late Miocene volcanism (15.3–6.4 m.y.) followed by regional folding is recognized in the map area between 35° 20′ and 36°S. Partly contemporaneous Middle Miocene volcanism (18.4–13.7 m.y.) also followed by regional folding is recorded in the Andes between 37° 30′ and 38°S. General volcanic quiescence from 6.4 to 2.5 m.y. is observed in the map area but whether this volcanic hiatus is of regional significance is not known.The majority of the K---Ar dates document a history of nearly continuous volcanism throughout the last 2.5 m.y. in the map area. The abundant and diverse sequences of volcanic strata formed during this time, have been divided into four successive age groups which as map units show the evolution and distribution of latest volcanic activity.Landforms preserved by this volcanic series show that topographic relief similar to the present has prevailed during this time. Deep incision of rivers into young volcanic terrain, estimated to be on the order of 1–2 m/1000 years, has produced a complex volcanic and morphologic record.Four plutons dated in this study give ages of 62.0, 41.3, 19.5, and 7.0 m.y. No spatial pattern of emplacement is observed in the map area where three of these plutons are represented.Similarities in structural style, orientation and degree of deformation of Miocene and Mesozoic strata suggest that Late Miocene regional folding may have accounted for a significant part of the observed deformation in older basement strata previously ascribed to earlier orogenies.A regional comparison of ages of recognized igneous and tectonic event at different latitudes in the central and southern Andes shows the gross chronology of Cenozoic events which can be correlated with sea-floor spreading and subduction events.  相似文献   

9.
Silicic volcanism in the Andean Central Volcanic Zone (CVZ) produced one of the world's largest Neogene ignimbrite provinces. The largest and best-known CVZ ignimbrites are located on the Altiplano-Puna plateau north of 24 °S. Their compositions and huge erupted volumes suggest an origin by large-scale crustal melting, and present-day geophysical anomalies in this region suggest still active zones of partial melting in the middle crust. Farther south in the CVZ, the Cerro Galán complex erupted ignimbrites in the late Miocene and Pliocene that are quite similar in volume and composition to those from north of 24 °S and they have a similar origin. However, there are a great many other, smaller ignimbrites in the southern CVZ whose compositions and geodynamic significance are poorly known. These are the subject of this paper.  相似文献   

10.
In Anatolia (Turkey), extensive calc-alkaline volcanism has developed along discontinuous provinces from Neogene to Quaternary times as a consequence of plate convergence and continental collision. In the Nevsehir plateau, which is located in the Central Anatolian Volcanic Province, volcanism consists of numerous monogenetic centres, several large stratovolcanoes and an extensive, mainly Neogene, rhyolitic ignimbrite field. Vent and caldera locations for the Neogene ignimbrites were not well known based on previous studies.In the Neogene ignimbrite sequence of the Nevsehir plateau, we have identified an old group of ignimbrites (Kavak ignimbrites) followed by five major ignimbrite units (Zelve, Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) and two smaller, less extensive ones (Tahar, Sofular). Other ignimbrite units at the margin of the plateau occur as outliers of larger ignimbrites whose main distributions are beyond the plateau. Excellent exposure and physical continuity of the units over large areas have allowed establishment of the stratigraphic succession of the ignimbrites as, from bottom to top: Kavak, Zelve, Sarimaden Tepe, Cemilköy, Tahar, Gördeles, Sofular, Kizilkaya. Our stratigraphic scheme refines previous ones by the identification of the Zelve ignimbrite and the correlation of the previously defined ‘Akköy’ ignimbrite with the Sarimaden Tepe ignimbrite. Correlations of distant ignimbrite remnants have been achieved by using a combination a field criteria: (1) sedimentological characterisitics; (2) phenocryst assemblage; (3) pumice vesiculation texture; (4) presence and characteristics of associated plinian fallout deposits; and (5) lithic types. The correlations significantly enlarge the estimates of the original extent and volume of most ignimbrites: volumes range between 80 km3 and 300 km3 for the major ignimbrites, corresponding to 2500–10,000 km3 in areal extent.The major ignimbrites of the Nevsehir plateau have an inferred source area in the Derinkuyu tectonic basin which extends mainly between Nevsehir and the Melendiz Dag volcanic complex. The Kavak ignimbrites and the Zelve ignimbrite have inferred sources located between Nevsehir and Derinkuyu, coincident with a negative gravity anomaly. The younger ignimbrites (Sarimaden Tepe, Cemilköy, Gördeles, Kizilkaya) have inferred sources clustered to the south between the Erdas Dag and the Melendiz Dag volcanic complex. We found evidence of collapse structures on the northern and southern flanks of the Erdas Dag volcanic massif, and of a large updoming structure in the Sahinkalesi Tepe massif. The present-day Derinkuyu tectonic basin is mostly covered with Quaternary sediments and volcanics. The fault system which bounds the basin to the east provides evidence that the ignimbrite volcanism and inferred caldera formation took place in a locally extensional environment while the basin was already subsiding. Drilling and geophysical prospecting are necessary to decipher in detail the presently unknown internal structure of the basin and the inferred, probably coalesced or nested, calderas within it.  相似文献   

11.
The Ezine region is located in the northwestern part of Anatolia where young granitic and volcanic rocks are widespread and show close spatial and temporal association. In this region magmatism began with the Kestanbol granite, which intruded into metamorphic basement rocks, and formed contact metamorphic aureole. To the east and southeast the pluton is surrounded by hypabyssal rocks, which in turn, are surrounded by volcanic associations. The volcanic rocks may be divided into two main groups on the basis of their lithological properties. Lavas and lahar deposits dominate the northern sector while ignimbrites dominate the southern sector. The ignimbrite eruptions were formed partly coevally with the plutonic and the associated volcanic rocks during the early Miocene. They appear to have been associated in a caldera collapse environment. Geochemical properties of the plutonic and the associated volcanic assemblages indicate that the magmas are hybrid and co-genetic and, were formed from a similar mantle source, under a compressional regime prior to the opening of the present E–W-trending graben of the Aegean western Anatolian region.  相似文献   

12.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

13.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

14.
15.
Subduction-related volcanism in the Nevados de Payachata region of the Central Andes at 18°S comprises two temporally and geochemically distinct phases. An older period of magmatism is represented by glaciated stratocones and ignimbrite sheets of late Miocene age. The Pleistocene to Recent phase (0.3 Ma) includes the twin stratovolcanoes Volcan Pomerape and Volcan Parinacota (the Nevados de Payachata volcanic group) and two small centers to the west (i. e., Caquena and Vilacollo). Both stratovolcanoes consist of an older dome-and-flow series capped by an andesitic cone. The younger cone, i. e., V. Parinacota, suffered a postglacial cone collapse producing a widespread debris-avalanche deposit. Subsequently, the cone reformed during a brief, second volcanic episode. A number of small, relatively mafic, satellitic cinder cones and associated flows were produced during the most recent activity at V. Parinacota. At the older cone, i. e., V. Pomerape, an early dome sequence with an overlying isolated mafic spatter cone and the cone-forming andesitic-dacitic phase (mostly flows) have been recognized. The two Nevados de Payachata stratovolcanoes display continuous major- and trace-element trends from high-K2O basaltic andesites through rhyolites (53%–76% SiO2) that are well defined and distinct from those of the older volcanic centers. Petrography, chemical composition, and eruptive styles at V. Parinacota differ between pre- and post-debris-avalanche lavas. Precollapse flows have abundant amphibole (at SiO2 > 59 wt%) and lower Mg numbers than postcollapse lavas, which are generally less silicic and more restricted in composition. Compositional variations indicate that the magmas of the Nevados de Payachata volcanic group evolved through a combination of fractional crystallization, crustal assimilation, and intratrend magma mixing. Isotope compositions exhibit only minor variations. Pb-isotope ratios are relatively low (206Pb/204Pb = 17.95–18.20 and208Pb/204Pb = 38.2–38.5);87Sr/86Sr ratios range 0.70612–0.70707,143Nd/144Nd ratios range 0.51238–0.51230, and 18OSMOW values range from + 6.8%o to + 7.6%o SMOW. A comparison with other Central Volcanic Zone centers shows that the Nevados de Payachata magmas are unusually rich in Ba (up to 1800 ppm) and Sr (up to 1700 ppm) and thus represent an unusual chemical signature in the Andean arc. These chemical and isotope variations suggest a complex petrogenetic evolution involving at least three distinct components. Primary mantle-derived melts, which are similar to those generated by subduction processes throughout the Andean arc, are modified by deep crustal interactions to produce magmas that are parental to those erupted at the surface. These magmas subsequently evolve at shallower levels through assimilation-crystallization processes involving upper crust and intratrend magma mixing which in both cases were restricted to end members of low isotopic contrast.  相似文献   

16.
The Upper Pliocene to Pleistocene Casabianca Formation is an assemblage of coarse-grained volcanogenic sediments derived from the Ruiz-Cerro Bravo volcanic axis, which were deposited on the west and east flanks of the middle Colombian Central Cordillera (5°–5°30′ N Lat.; 74°30′–76° W Long.).Facies assemblages, paleocurrent data, and geomorphic expression define four depositional settings: (1) an alluvial fan with debris-flow lobes represented by the Manizales fan in the western sector and the Fresno fan in the eastern sector, characterized by the facies assemblage of Gms, Gp and Gt; (2) valley fill deposits represented by the Arauca section at the west sector, characterized by the facies assemblage of Gms and Gi; (3) deposits produced by the diversion of the debris-flow and hyperconcentrated flood-flow deposits from the main channels into narrow effluent channels; represented by the Delgaditas and Manzanares-Marquetalia sections, in the eastern sector and characterized by the facies assemblage Gms and Gm(a); and (4) lateral accretion in gravelly, medium to high-sinuosity rivers, represented by the Casabianca-Villa Hermosa, Palo Cabildo-Falan, Lagunillas and Guali sections of the eastern sector, characterized by the facies assemblage Gms, Gp and Gt.Casabianca Formation deposition records the response of a semi-arid to tropical fluvial system to large, volcanism-induced sediment loads.  相似文献   

17.
The volcano-stratigraphic and geochronologic data presented in this work show that the Tenerife central zone has been occupied during the last 3 Ma by shield or central composite volcanoes which reached more than 3000 m in height. The last volcanic system, the presently active Teide-Pico Viejo Complex began to form approximately 150 ka ago. The first Cañadas Edifice (CE) volcanic activity took place between about 3.5 Ma and 2.7 Ma. The CE-I is formed mainly by basalts, trachybasalts and trachytes. The remains of this phase outcrop in the Cañadas Wall (CW) sectors of La Angostura (3.5–3.0 Ma and 3.0–2.7 Ma), Boca de Tauce (3.0 Ma), and in the bottom of some external radial ravines (3.5 Ma). The position of its main emission center was located in the central part of the CC. The volcano could have reached 3000 m in height. This edifice underwent a partial destruction by failure and flank collapse, forming debris-avalanches during the 2.6–2.3 Ma period. The debris-avalanche deposits can be seen in the most distal zones in the N flank of the CE-I (Tigaiga Breccia). A new volcanic phase, whose deposits overlie the remains of CE-I and the former debris-avalanche deposits, constituted a new volcanic edifice, the CE-II. The dyke directions analysis and the morphological reconstruction suggest that the CE-II center was situated somewhat westward of the CE-I, reaching some 3200 m in height. The CE-II formations are well exposed on the CW, especially at the El Cedro (2.3–2.00 Ma) sector. They are also frequent in the S flank of the edifice (2.25–1.89 Ma) in Tejina (2.5–1.87 Ma) as well as in the Tigaiga massif to the N (2.23 Ma). During the last periods of activity of CE-II, important explosive eruptions took place forming ignimbrites, pyroclastic flows, and fall deposits of trachytic composition. Their ages vary between 1.5 and 1.6 Ma (Adeje ignimbrites, to the W). In the CW, the Upper Ucanca phonolitic Unit (1.4 Ma) could be the last main episode of the CE-II. Afterwards, the Cañadas III phase began. It is well represented in the CW sectors of Tigaiga (1.1 Ma–0.27 Ma), Las Pilas (1.03 Ma–0.78 Ma), Diego Hernández (0.54 Ma–0.17 Ma) and Guajara (1.1 Ma–0.7 Ma). The materials of this edifice are also found in the SE flank. These materials are trachybasaltic lava-flows and abundant phonolitic lava and pyroclastic flows (0.6 Ma–0.5 Ma) associated with abundant plinian falls. The CE-III was essentially built between 0.9 and 0.2 Ma, a period when the volcanic activity was also intense in the ‘Dorsal Edifice' situated in the easterly wing of Tenerife. The so called ‘valleys' of La Orotava and Güimar, transversals to the ridge axis, also formed during this period. In the central part of Tenerife, the CE-III completed its evolution with an explosive deposit resting on the top of the CE, for which ages from 0.173 to 0.13 Ma have been obtained. The CC age must be younger due to the fact that the present caldera scarp cuts these deposits. On the controversial origin of the CC (central vertical collapse vs. repeated flank failure and lateral collapse of mature volcanic edifices), the data discussed in this paper favor the second hypothesis. Clearly several debris-avalanche type events exist in the history of the volcano but most of the deposits are now under the sea. The caldera wall should represent the proximal scarps of the large slides whose intermediate scarps are covered by the more recent Teide-Pico Viejo volcanoes.  相似文献   

18.
The Andes between 36°30′ and 37°S represent a Cretaceous fold and thrust belt strongly reactivated in the late Miocene. Most of the features that absorbed Neogene shortening were already uplifted in the late Cretaceous, as revealed by field mapping and confirmed by previous fission track analysis. This Andean section is formed by two sectors: a western-inner sector generated by the closure of the upper Oligocene-lower Miocene intra-arc Cura Mallín basin between the middle and late Miocene (Guañacos fold and thrust belt), and an eastern-outer sector, where late Triassic-early Jurassic extensional depocenters were exhumed in two discrete phases of contraction, in the latest early Cretaceous and late Miocene to the Present, respectively (Chos Malal fold and thrust belt). Late Miocene deformation has not homogeneously reactivated Cretaceous compressive structures, being minimal south of 37°30′S through the eastern-outer sector (southern continuation of the Chos Malal fold and thrust belt). The reason for such an inhomogeneous deformational evolution seems to be related to the development of a late Miocene shallow subduction regime between 34°30′ and 37°45′S, as it was proposed in previous studies. This shallow subduction zone is evidenced by the eastward expansion of the arc that was accompanied by the eastern displacement of the orogenic front at these latitudes. As a result, the Cretaceous fold and thrust belt were strongly reactivated north of 37°30′S producing the major topographic break along the Southern Central Andes.  相似文献   

19.
Combined paleomagnetic and structural research was carried out in the Mura-Zala Basin including the western and southern surrounding hills in northeastern Slovenia. The Mura-Zala Basin was formed due to ENE–WSW trending crustal extension in the late Early Miocene (18.3–16.5 Ma). First, marine sedimentation took place in several more or less confined depressions, then in a unified basin. During thermal subsidence in the late Miocene deltaic to fluvial sediments were deposited. After sedimentation, the southernmost, deepest depression was inverted. Map-scale folds, reverse and strike-slip faults were originated by NNW–SSE compression. This deformation occurred in the latest Miocene–Pliocene and is reflected also in the magnetic fabric (low field susceptibility anisotropy). After this folding, the Karpatian sediments of the Haloze acquired magnetization, then suffered 30° counterclockwise rotation relative to the present north (40° counterclockwise with respect to stable Europe). This Pliocene (Quaternary?) rotation affected a wide area around the Mura-Zala Basin. The latest Miocene to Quaternary folding and subsequent rotation may be connected to the counterclockwise rotation of the Adriatic microplate.  相似文献   

20.
We present new paleomagnetic results from the well dated Miyako Cretaceous sediments (100–110 Ma) from Northeast Japan. These results, combined with those of Tosha [1], yield an in-situ characteristic directionD = 321°,I = 54.5° (α95 = 4.5°),N = 14 sites; reduced to a reference point at 40°N, 142°E). This direction is found to coincide with that of most older plutonic and sedimentary rocks of Devonian to lower Cretaceous age. It is also identical with the westerly pre-folding direction which is preserved in many Oligocene (20–40 Ma) formations from Northeast Japan [1,2]. In contrast, all recent formations (0–17 Ma) have been magnetized in the direction of the present axial dipole field. Only the Oligocene and Miocene results appear to be primary, or at least pre-folding. The Miyako sulfide-bearing sediments and lower Cretaceous (110–125 Ma) magnetite-bearing granites could either still bear a primary magnetization or be completely remagnetized by a low temperature chemical event. Evidence for such events is now found in many places, and as close as South Korea. Available data constrain the Oligo-Miocene history of Northeast Japan and indicate at least20/30° counterclockwise rotation with respect to mainland Asia during the opening of the Sea of Japan. On the other hand, the pre-40 Ma history of Northeast Japan is not well constrained and three models are proposed which are compatible with various interpretations of the data. None of them can presently document pro-Oligocene motion of Northeast Japan with respect to Asia. The most “economical” model implies widespread remagnetization. We conclude that, because of the scarcity of well tested primary magnetization directions, the classical bending of the Japanese Islands rests on weaker grounds than generally realized and that no pre-40 Ma apparent polar wander path of the Japanese Islands can safely be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号