首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油棕废弃物及生物质三组分的热解动力学研究   总被引:4,自引:0,他引:4  
主要利用热重分析仪(TG)对油棕废弃物和生物质的三组分(半纤维素,纤维素和木质素)的热解特性进行了系统研究,对比分析了热解特性,计算了其热解动力学参数,并研究了升温速率对生物质热解特性的影响。研究发现半纤维素和纤维素易于热降解而木质素难于热解;油棕废弃物的热解可以化分为:干燥、半纤维素热解、纤维素热解和木质素热解4个阶段;生物质的热解反应主要是一级反应,油棕废弃物的活化能很低,约为60kJ/kg;升温速率对生物质影响很大,随升温速率加快,生物质热解温度升高,热解速率降低。  相似文献   

2.
高斯多峰拟合用于生物质热解三组分模型的研究   总被引:1,自引:0,他引:1  
对稻壳、稻秆、芒属和芦苇的热解过程进行热重分析(TG)。基于生物质热解三组分模型理论,运用高斯多峰拟合法对上述4种生物质的失重速率曲线进行解析。结果表明:4种生物质的热解失重速率曲线均可以分解成4个相互叠加的拟合峰,分别对应水分析出、半纤维素分解、纤维素分解和木质素分解。利用Coats-Redfern法计算了三组分的动力学参数。计算结果表明:半纤维素、纤维素和木质素热解的反应级数分别为2、1和2,活化能分别为152~180kJ/mol、206~248kJ/mol和32~42kJ/mol。最后采用重量加权平均法得到了4种生物质热解主要阶段的活化能。  相似文献   

3.
为优化生物质热解过程,获得更高品质的生物油,利用热裂解仪-气相色谱/质谱联用仪(Py-GC/MS)对黄豆秆进行两级连续热解研究,并利用热重分析仪(TG)研究黄豆秆在不同升温速率下的失重特性。结果表明:黄豆秆热失重过程主要分为4个阶段,其中200~450℃为主要的热解区间,此阶段内基本完成半纤维素和纤维素的热解。与单级热解相比,两级连续热解能减少组分间的相互作用和产物的二次反应,进而提高总可冷凝挥发性有机产物的产率。250℃和300℃时能提高各类产物的产率,尤其可显著提高酚类和芳香烃类等源于木质素的产物产率;而400℃和450℃时主要提高酸类、呋喃类和环戊烯酮类等源于半纤维素和纤维素的产物的含量和产率,有利于提高生物油的品质和分离利用。  相似文献   

4.
采用热天平分析仪对稻草和北宿煤、神府煤的共热解行为进行研究,建立共热解模型,并对实验结果进行分析。结果表明,当温度低于700 K时,失重曲线与稻草失重曲线吻合较好。温度高于700 K时,失重曲线不能用生物质和煤失重曲线的叠加描述。共热解模型表明,加入少量生物质后,共热解反应表观活化能出现下降趋势,随生物质含量增加,活化能逐渐升高。生物质中纤维素和半纤维素对于共热解反应的参与程度低于木质素。对比神府煤和北宿煤与稻草共热解实验结果表明,较低的煤热解温度有利于提高生物质利用率。  相似文献   

5.
纤维素生物质热解试验及其最概然机理函数   总被引:3,自引:1,他引:2  
采用化学方法测量纤维素生物质稻秆、棉秆及松木屑的纤维素及木质素含量,利用Malek法逻辑选择得到较合理的最概然机理函数G(α)或f(α),并通过热重法分析纤维素含量对热解特性的影响规律.结果表明:纤维素含量越高,热解速率越大;木质素含量越高,热解速率越小;随着样品升温速率的提高,热解曲线向低温区偏移,热解速度加快;样品粒径越小,颗粒间的空隙越小,传质传递的阻力增大,失重速率降低,最大反应速率降低;利用Malek法推断最概然机理函数十分有效,通过分析得到稻秆热解过程应分为两个阶段分别建立动力学模型,前段采用D1模型,后段采用F1模型.  相似文献   

6.
在对木质生物质在0~20℃/min这类较低升温速率条件下的热解特性研究基础上,采用热重分析法并结合TG、DTG曲线研究了干燥锯末在3种不同升温速率下的热解及动力学特性。并计算出活化能、频率因子,分析高升温速率(30、45℃/min)与低升温速率(10℃/min)对锯末热解气化影响的区别。研究结果表明:锯末热解时的最大失重速率随升温速率的升高而增大,在升温速率为45℃/min时达到最大为25.41%/min。在半纤维素热解占主导的阶段,热解反应机理为一级随机成核和随后成长过程,反应的活化能及频率因子随着升温速率的提高呈现先增大后减小的趋势;在纤维素和木质素热解占主导的阶段,热解反应机理为三维球形对称扩散过程,上述2个参数随着升温速率的提高呈现减小的趋势,且较高的升温速率能显著促进锯末挥发物质的析出。  相似文献   

7.
采用热重分析仪(TGA)对生物质与城市污水污泥单独及共热解基本热解特性进行了考察,并结合测定的生物质中纤维素、半纤维素和木质素含量对共热解过程热解特性的影响规律发现:升温速率为20℃/min时,污泥单独热解分为水分析出、挥发分析出和焦炭化3个阶段;由生物质单独热解特性分析可知,松木屑热解特性最优,花生壳次之,狐尾藻最差;通过不同生物质添加量时的共热解过程考察,得知较高的生物质添加量更有利于共热解过程的进行;结合共热解特性变化与生物质组成的关系可知,含纤维素和木质素较多的松木屑与污泥共热解时有明显的协同作用发生,含木质素较多的花生壳也有较为明显的协同作用,含半纤维素较多的狐尾藻协同效果不明显。  相似文献   

8.
为解决陆地生物质资源短缺,开发水生生物质有效替代部分陆地生物质迫在眉睫。通过热重法研究玉米秸秆和海藻共同热解的特性,重点考察掺混比例和升温速率的影响,并对混合样品的热力学特性和动力学特性进行分析。结果显示,热解分为干燥、挥发分析出及焦炭热解三个阶段。掺配后的混合样品最终失重率与最大失重速率均小于纯秸秆与纯海藻。随着海藻掺配比例的增加,可燃性指数Ca先增大后减小,燃尽特性指数K递减,热解特性指数S先增大后减小。不同升温速率工况下,在热解区间(200~600℃),随着升温速率的升高,样品的热重曲线右移,失重率越来越大,最大失重速率先减小后增大,30℃/min时最小。Ca在递减,K、S呈增加趋势。动力学研究结果表明,不同掺配比例工况下,混合样品存在明显的协同作用,降低了共热解所需活化能。在不同升温速率工况下,升温速率越大,所需要的活化能越小,样品越容易发生热解。  相似文献   

9.
生物质与煤共热解特性研究   总被引:2,自引:1,他引:2  
选取4种典型生物质样品(麦秆、稻秆、木质素、造纸废液颗粒),将生物质样品与煤分别以1∶9、3∶7、5∶5的重量比例掺混。采用热重分析法,在相同升温速率下,对各掺混样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;将各生物质样品与煤混合热解的实际微分曲线与按比例折算后曲线进行比较,得出实际微分曲线与折算曲线基本吻合,即生物质对煤的热解无明显影响。  相似文献   

10.
纤维素和木质素含量对稻草、锯末热解及燃烧特性的影响   总被引:1,自引:0,他引:1  
利用热重分析仪分析了生物质中纤维素和木质素含量对稻草、锯末热解及燃烧特性的影响。在热解过程中,生物质中纤维素含量较高的锯末,与纤维素含量较低的稻草相比,燃料失重要大。在燃烧过程中,通过实际生物质与纤维素和木质素混合物的对比,发现稻草和锯末的燃烧分为挥发分的脱除和焦的燃烧两个阶段,且燃烧特性与焦的形貌密切相关。  相似文献   

11.
王璐  黄历  刘荣厚  蔡均猛 《可再生能源》2014,(12):1850-1855
该研究选取中国产量较高的3种农作物水稻、油菜和棉花的秸秆作为研究对象,采用Weibull混合模型对稻秆、油菜秆和棉秆进行热解动力学解析。结果表明,稻秆、油菜秆和棉秆的热解动力学子过程可分为3个过程:水分蒸发,热解挥发分析出和热解炭化;Weibull混合模型可很好的描述3种物料的热解挥发分析出过程;Weibull混合模型可将生物质热解动力学过程分解为其主要组分纤维素、半纤维素和木质素的热解子过程。研究结果有助于后续生物质热解机理的研究。  相似文献   

12.
生物质组分热解气化特性研究现状   总被引:2,自引:2,他引:0  
为了提升生物质气化气热值,减少焦油产率,越来越多的研究者开始试图从生物质组分的角度对热解气化特性进行探索.概述了碱金属、温度、压力、升温速率在热解气化过程中对生物质组分造成的影响,以及纤维素、半纤维素、木质素、萃取物和组分间相互作用对生物质热解气化过程造成的影响.提出了在二组分相互作用研究的基础上,应继续开展三组分相互作用的实验研究,以及生物质模化物和生物质原料化学结构差异对生物质原料热解气化特性的影响.此外,提出了采用单变量对照实验方法研究单变量的作用大小.  相似文献   

13.
为探究生物质三组分(纤维素、半纤维素和木质素)对成型颗粒物理性能的影响,以棉秆、木屑以及生物质三组分为研究对象,单独或按一定掺混比例混合后制备成型颗粒,使用电子万能材料试验机分析了成型颗粒的表观密度和抗压强度,利用X射线光电子能谱仪分析了生物质成型前后分子结构的变化。结果表明:纤维素直接影响成型颗粒的抗压强度,半纤维素和木质素主要作为黏结剂,协同纤维素间接提高成型颗粒的抗压强度。向棉秆中加入纤维素或半纤维素后,其混合成型颗粒中的C—OH官能团均明显提高,且产生了新的C=C官能团,有利于形成分子间作用力和提高分子结构的稳定性,增强成型颗粒的物理性能。  相似文献   

14.
竹材热解过程的动力学研究   总被引:2,自引:0,他引:2  
靳攀科  邹晓光 《节能》2008,27(6):20-22
采用工业分析及热重分析对竹材进行了热解研究。结果表明:竹材具有高挥发分、低灰分的特性;随着升温速率的增大,最大失重率增加,DTG曲线整体向后移动,最大失重率所对应的温度升高。在升温速率20℃/min下对竹材试样进行热解,有利于竹炭产率的提高;分别对热解过程进行分段拟合和整体拟合,分段拟合时,第一阶段反应级数为0.5,第二阶段反应级数可以认为是1.5或2;整体拟合时,反应级数相关系数在0.99以上,可以认为竹材热解过程是一个整体连续反应,前半阶段以半纤维素热解为主,后半阶段以木质素热解为主,纤维素的热解则贯穿整个反应过程。在不同升温速率下,无论对分段拟合还是整体拟合,随着反应级数的增加,活化能和频率因子都由小变大,呈现很强的规律性。  相似文献   

15.
《可再生能源》2013,(7):70-76
利用加压热重仪对纤维素进行了热重分析实验,获得了不同升温速率(5,10,20 K/min)和不同压力(0.1,0.5,1,1.5,2 MPa)条件下的热重曲线TG和失重速率曲线DTG,并通过热分析数学方法获得了热解动力学参数。结果表明,在各压力条件下,提高升温速率,纤维素主热解区间均往高温区移动,热解略有加深;在各升温速率条件下,增大压力,主热解区间均往低温区移动,热解时间缩短,剩余残渣百分比增大;在同一升温速率下,随着压力的增大,热解活化能增大,且升温速率越大,活化能随压力增大越明显;在同一压力下,随着升温速率的提高,热解活化能增大,且压力越大,活化能随升温速率增大趋势越明显;在各条件下热解活化能和指前因子存在着较好的补偿效应。  相似文献   

16.
为了深入探究海藻生物质的热解机理,采用表征分析和热重-质谱分析展开对海藻中多糖、蛋白质、灰分这3种主要组分参与热解规律的研究。结果表明:多糖和蛋白质的热失重范围分别为175~310℃和300~350℃;而灰分使海藻热解过程中最大热失重速率增大,且脱灰使失重峰对应的温度区间向低温段偏移。海藻热解过程中主要气体的释放规律为:由于多糖、蛋白质和灰分在参与热解过程中均产生CO_2,其释放规律曲线与热失重曲线相对应。而SO_2气体的释放主要来自于多糖中硫酸基的热解。由于多糖及脱灰后海藻不含或含有少量蛋白质,所以热解过程中无NO_2释放。  相似文献   

17.
对三种生物质成型燃料在不同气氛下和不同升温速率下进行热重实验,研究反应条件对生物质成型燃料失重特性的影响规律,并对其空气气氛下的动力学特性进行了分析。研究结果表明,生物质在空气气氛下的挥发分析出速率比N2气氛下高,随着温度升高,N2气氛下主要是纤维素、半纤维素以及木质素的分解,而空气气氛下还伴随有其分解产物的燃烧。生物质中挥发分含量较高时,反应活性也比较高。实验温度由室温升至800℃时,在升温速率为10℃/min ~ 25℃/min范围内,随着升温速率的升高,松木热重曲线先向低温区移动再向温度较高的一侧移动,最大失重速率对应的温度也表现出相同规律,当升温速率为20℃/min时最大失重速率对应的温度最低,升温速率为25℃/min时失重峰值最大。动力学特性分析表明,采用2组分动力学模型可以较好地表征生物质在空气中的失重特性,计算结果与实验结果吻合度较高。  相似文献   

18.
基于热红联用分析的木质素热裂解动力学研究   总被引:20,自引:0,他引:20  
利用热重红外联用系统对生物质的主要组分木质素进行了热裂解动力学研究.在用红外固体压片法研究木质素结构的基础上得到不同升温速率下木质素热裂解的热重曲线.实验结果表明,随着升温速率的增加,各个阶段的起始和终止温度向高温侧轻微移动,主反应区间增加;计算得到的木质素两阶段活化能分别为58.41 kJ/mol和119.98 kJ/mol.与纤维素热解气的联机红外分析谱图相比可知木质素热解过程中气体析出机理复杂,主要生成CO、CH4和呋喃等产物.  相似文献   

19.
在管式炉内对纤维素、半纤维素和木质素进行热解实验研究,考察热解温度对于热解产物(焦炭、焦油和不凝性气体)分布的影响。实验结果表明:随温度的升高,三组分热解产生的焦炭产量不断降低,气体产量不断增加,焦油产量先升后降,存在一最佳反应温度。不凝气体组分随温度变化有不同的变化趋势,焦油的组分也不同。选取稻秸和玉米秸秆为原料,按照这两种生物质中三组分含量的不同将纤维素、半纤维素和木质素的产物进行叠加,并与稻秸和玉米秆的热解实验结果作对比,分析三组分含量对于热解产物的影响。结果表明:按照三组分叠加的方法来考察生物质的热解在一定程度上是可行的,产物产量的总体趋势一致,在产量上稍有差异。  相似文献   

20.
城市污泥耦合锯末共热解特性及动力学分析   总被引:1,自引:0,他引:1  
为实现城市污水污泥与锯末共热解的工业应用,利用热重分析仪对污泥耦合锯末共热解过程进行了实验与理论研究,揭示了锯末添加比例、升温速率对污泥热解特性的影响,并基于Coats-Redfern法,结合20种常见固体热解机理函数确定了污泥耦合锯末共热解过程最优热解动力学模型。结果表明:锯末相比污泥具有更低的表观活化能,最大失重速率是污泥的4倍;锯末的添加使得热重分析(TG)曲线向下偏移,最大失重速率明显增大,挥发份析出特性变强;随着升温速率的增大,固态残渣增加,最大失重速率减小,不利于热解反应的进行;按7∶3比例混合的污泥锯末耦合热解微分热重分析(DTG)曲线峰前(230~350℃)表观活化能为38.81 k J/mol,最优动力学模型为D_5-3D扩散模型;峰后(350~500℃)表观活化能为29.93 k J/mol,最优动力学模型为C~2-化学反应模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号