首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
成功  焦李  段田莉 《太阳能学报》2019,40(4):1093-1099
以一定比例松木锯末、枯枝、落叶混合物作为生物质原料,在自制的移动床气化炉上研究脱水污泥/生物质的混合热解-气化行为,探讨不同掺混比(0%~100%)和炉温(800~900℃)下热解-气化过程对产物分布、气体成分和气化特性的协同效果。结果表明:添加生物质能有效提高气体产率并减少液体产物的生成。混合热解-气化对气体产物具有明显的协同作用,协同参数Vsyn在掺混比为50%时最高,并随炉温的升高而增大。气体产物组分同样受到2种原料共同作用的影响,炉温为800~900℃内,H_2和CO含量的实验值比理论计算值分别高10.75%~12.05%和6.35%~7.55%,CO_2含量则偏低7.55%~11.7%。在炉温850℃、生物质掺混比为50%的条件下,脱水污泥/生物质混合热解-气化干气产率达到0.56 Nm~3/kg,气体热值10.08 MJ/Nm~3,碳转化率73.06%。  相似文献   

2.
邱新红 《节能》2014,(6):28-31
通过对玉米秆、小麦秆、棉花秆、稻草、松木屑等生物质进行热重分析和差热分析,分析了生物质气化过程的裂解机理。研究中采用松木屑作为气化原料,得出了气化温度、压力、水蒸气加入量等反应条件对气化产物的产率、组成成分及焦油产率的影响规律,研究结果表明,温度对生物质气化的影响最大,当温度为800℃时气体的产率最高。  相似文献   

3.
为了研究煤粉与生物质气混燃对锅炉燃烧特性以及燃烧产物的影响,基于Aspen软件搭建了生物质气化模型,得到气化效率最高时的生物质气;基于Fluent软件搭建生物质气与煤粉的混合燃烧模型,在保证锅炉总输入热不变的情况下,分析煤粉锅炉掺烧10%不同的生物质气的锅炉炉膛温度分布和主要的烟气组分。结果表明:在分别掺烧10%的松木气、秸秆气和木屑气后相对于纯煤粉燃烧,炉膛燃烧区温度由1 843 K下降到1 789 K,炉膛出口烟温增大,O_2和CO出口体积分数增大,CO_2出口体积分数降低,NO_x出口质量浓度值由原来的548 mg/Nm~3降到500 mg/Nm~3以下。  相似文献   

4.
车德勇  高俊男  李少华 《太阳能学报》2015,36(11):2744-2751
对褐煤、松木屑、稻壳、秸秆及其掺混试样在CO_2气氛下进行共气化热重实验,采用扫描电镜与傅里叶红外光谱仪对不同温度下(320~850℃)所得半焦的物化结构进行研究分析。研究发现:松木屑与褐煤按质量比1∶1掺混时,其开始气化温度和气化终止温度有所降低,说明混合燃料的气化特性较好;松木屑半焦中存在K、Ca等碱金属含量较高的球形颗粒物;随着气化温度的升高依次发生变形—褶皱—塌陷的变化过程,而碱金属的挥发主要集中在焦炭气化阶段;与褐煤相比,松木屑中羟基、脂肪族烷烃键等含量较高,气化时较低温度时即会断裂,从而为气化反应提供充足的还原性气氛。共气化过程中,小分子侧链—NH—键、烷基—CH_2—、—CH_3键、芳香性烷键结构上的—CH_2—、—CH_3键、C==C键、醚键等含氧官能团的谱峰消失温度较褐煤单独气化时提前,表明共气化过程中生物质的加入加速了—NH—、—CH_2—、—CH_3、C==C及醚键等的断裂,进一步从微观角度证实生物质与煤共气化的协同作用。  相似文献   

5.
江龙  黄丹  胡松 《太阳能学报》2014,35(12):2553-2558
在固定床上开展谷壳热解和水蒸气气化实验,通过使用冷捕集法收集实验过程中形成的焦油,并对其进行GC/MS成分和重量分析,从而研究热解和水蒸气气化过程中焦油析出的不同特性并考察温度、水蒸气和催化剂等因素对水蒸气气化焦油析出的影响。研究表明:在实验工况下,焦油组分主要为芳香族化合物和含氧化合物;升高温度、加入水蒸气或催化剂均能降低焦油产量,使焦油芳香性增大;加入水蒸气更有利于焦油重整;催化剂可使焦油组分趋于单一化,3种催化剂的焦油裂解性能依次为Fe2O3CaOMgO。  相似文献   

6.
以成型松木颗粒为原料,进行低温热解,研究了热解温度和升温速率对生成的松木半焦产率及官能团的影响。以试验得到的松木半焦进行蒸汽气化试验,对比分析了温度对半焦重整气化形貌特征、比表面积和平均孔径的影响。研究表明:随着热解温度升高,松木半焦脂肪族结构峰消失转化为烃等小分子物质及气化气,进而降低半焦产率。升温速率升高,半焦产率呈先下降后升高的趋势,在800℃升温速率为30K/min时半焦产率最低。不同温度热解和蒸汽气化对比试验表明,温度相对较低时(500℃)热解和蒸汽气化半焦孔隙结构相近,随着温度的升高,蒸汽气化半焦结构发生明显变化,900°C时出现了更小的孔道结构且比表面积增加明显。蒸汽引入使松木半焦和水蒸气发生热解反应的同时发生了脱氢反应,气化半焦形貌出现熔融和烧结现象。  相似文献   

7.
生物质高温分解产物析出特性的试验研究   总被引:1,自引:0,他引:1  
采用TG/MS联用仪对3种典型生物质(玉米秸秆、玉米芯和稻秆)在高温分解过程中气相产物的析出特性进行了试验研究,分析了温度、升温速率、氧浓度、生物质种类对其的影响.结果表明:轻质组分的析出集中于挥发分大量热解的温度区域,而焦油组分的析出没有明显的温度窗口;升温速率对各产物析出的影响有限,随着升温速率的增大,挥发分析出特性指数增大,活化能降低,更易于产物析出;有氧环境更有利于热解温度区产物的析出,相比有氧条件下氧浓度的改变,产物的析出对有、无氧更敏感;3种生物质的产物析出量受挥发分含量的影响由大到小依次为:稻秆>玉米芯>玉米秸秆.  相似文献   

8.
针对已有生物质气化模型在实际工程应用中的局限性,以Н.Н.Доброхотов提出的煤气化经验模型为基础,依据改用生物质成型燃料的3M13型上吸式气化炉所测数据,得到上吸式固定床生物质气化的综合计算法模型。该模型主要修正原模型干馏阶段的热解水、CO_2和焦油的产率;并在固定碳气化阶段,引入空气当量比作为参数,改进原模型中C/N特征值取值的随机性。通过与其他学者的上吸式气化炉生物质气化实验对比,模拟结果与试验数据符合良好,证明本模型在工程应用中模拟生物质上吸式固定床气化过程的可行性。  相似文献   

9.
聚丙烯类废塑料空气气化特性试验研究   总被引:2,自引:0,他引:2  
以单一粒径2mm的聚丙烯树脂为试验物料,空气作为气化介质,在内径100mm,高3.5m流化床反应器内对聚丙烯类塑料的空气气化特性进行了试验研究。试验结果表明,在650—750℃温度区域内气化,其燃气成分主要是气相碳氢化合物CH4、C2Hm(m=2,4,6)等,CO和H2所占比例很少.随气化温度的升高,CH4、CO和H2含量增加,C2Hm含量下降,在相同的气化温度下,床层高度增加,CH4和H2含量略有增加,CO含量基本保持不变。焦油和焦炭的产率较低并随气化温度的提高而降低,空气系数增加,燃烧份额提高,气化炉温度也相应增加。同时还比较分析了生物质和煤与聚丙烯空气气化特性。  相似文献   

10.
采用循环流化床气化中试装置对玉米秸秆进行了气化试验,分别在常温空气与250℃预热空气条件下,研究了空气当量比(ER)和原料含水率对气化特性的影响规律。结果表明:随着ER的增大,循环流化床气化炉内的反应温度升高,气化燃气中的CO2含量增加,焦油与CO含量及燃气热值降低,气化效率随ER的增大呈先增大后减小的趋势;随着气化原料含水率的增加,循环流化床气化炉内的平均温度下降,燃气中的CO2与H2及焦油含量逐渐升高,CO含量下降,CH4与CnHm含量均为先增加后减少。与常温空气工况相比,预热空气工况下的燃气热值与气化效率均有一定程度的提高。采用预热空气为气化介质,提高气化剂温度,可显著促进玉米秸秆的气化反应,提升气化效率。  相似文献   

11.
建立以Fe_2O_3为载氧体的生物质化学链气化模型。基于吉布斯自由能最小化原理,利用HSC Chemistry软件对气化系统进行热力学分析与过程模拟。研究燃料反应器内载氧体/生物质比(O/B,mol/mol)、反应温度、水蒸气/生物质比(S/B,mol/mol)、CO_2/生物质比(C/B,mol/mol)等因素对化学链气化系统性能的影响,并评价气化过程中不同氧源的反应活性;考察空气反应器内氧气/铁比(O_2/Fe,mol/mol)对载氧体恢复晶格氧性能的影响。系统的优化参数为:O/B为0.15、燃料反应器温度为1100℃、S/B为0.40、C/B为0.30、O_2/Fe为1.00。  相似文献   

12.
杨辉  陈文宇  孙姣  陈文义 《太阳能学报》2022,43(10):335-342
建立下吸式生物质气化炉热力学平衡模型,该模型包括焦炭、焦油和气体,并用已公布的实验数据对模型进行验证,均方根(RMS)在1.304~3.814之间,结果表明该模型的预测值与实验数据吻合较好,可认为模型可靠。然后模拟棉秆在下吸式生物质气化炉中以空气和富氧气体2种气化氛围下,不同操作参数(当量比、预热温度和气化炉反应温度)下对棉秆气化的气体组分、热值和产率的影响。模拟结果表明:富氧气体为气化剂时,当量比从0.20增至0.35时,气体中N2含量比空气显著下降,达10%以上,同时发现能提高气体中H2和CO的含量和热值,热值比空气提高约20%。预热温度对气化成分变化影响有限,随预热温度从30 ℃变化到130 ℃,气体的平均热值从空气的5.2 MJ/m3提高到富氧气体的7.0 MJ/m3。随气化炉内反应温度从750 ℃升至1250 ℃,空气和富氧气体2种气化剂下的H2和CO分别从20.94%、26.84%和21.77%、28.67%下降到4.06%、9.12%和10.49%、21.60%,导致气体的热值降低。  相似文献   

13.
在常压固定床反应器中,以不同种类生物质热解残焦为原料进行CO_2气化制取CO研究,并与煤焦的CO_2气化效果进行对比。实验在气化温度700~1000℃条件下进行,研究热解残焦制备温度、生物质热解残焦种类、气化温度对气化产气中CO浓度、热解残焦转化率的影响。研究结果表明:制备温度为550℃的生物质热解残焦的气化效果优于600℃时;生物质热解残焦的气化效果明显优于煤焦,且垃圾焦气化效果最佳;污泥焦、垃圾焦、秸秆焦的最佳气化温度为900℃,煤焦的最佳气化温度为1000℃。  相似文献   

14.
生物质原料烘焙预处理研究   总被引:1,自引:0,他引:1  
烘焙预处理是生物质气化或混合煤炭燃烧之前的预热处理过程。综述国外研究资料的基础上,建立了包括质量产率、能量产率、高热值、氧碳比、含水量、研磨能耗等6项参数在内的综合评价指标和标准,研究了草芦、秸秆、松木屑、锯末、柳树木屑等生物质原料的烘焙预处理方式。研究发现:松木屑、锯末、秸秆的理想烘焙条件为:烘焙时间0.5h,烘焙温度依次为250~275℃、250℃、230~250℃;柳树木屑的理想烘焙条件为:烘焙时间1h、烘焙温度230℃。草芦在各烘焙条件下均无法达到标准水平。  相似文献   

15.
在600kW流化床气化炉工业示范装置上以空气.水蒸汽为气化剂,将生物质/煤按不同比例进行了共气化的实验研究.在实验研究的运行条件下,得到了生物质/煤混合比例对气化炉工作温度、燃气热值、气体产率和气化效率等重要技术参数的影响.对玉米芯/煤的比例为81/19时的典型实验结果表明:气化炉工作温度869℃,空气当量比ER=0.21,S/B=0.20时,气体产率1.96m3/kg,燃气热值6.4MJ/m3,气化效率71.3%,燃气中焦油含量小于10mg/m3,该炉经过连续运行考核,运行平稳,工况稳定.  相似文献   

16.
针对生物质气化技术存在的制氢效率低、焦油含量高等问题,文章提出了一种生物质合成气强化重整提质工艺,并应用HSC Chemistry软件对该工艺进行了热力学分析;研究了反应温度、S/C以及CaO/C对H_2放大率、提质产气各组分浓度等指标的影响。研究结果表明:经过强化重整提质,生物质合成气中焦油组分可全部裂解;吸附剂CaO的加入,可显著提高提质气的H_2放大率和浓度;随着S/C和CaO/C的逐渐增加,H_2的放大率与浓度均逐渐升高,但是,当S/C≥18,CaO/C≥20后,H_2放大率的增幅明显下降,H_2浓度也趋于稳定;当温度为550~600℃,S/C≥18,CaO/C≥20时,H_2放大率可以达到7.5,H_2浓度可以达到98%以上。  相似文献   

17.
利用恒温燃烧污染物在线监测系统,研究生物质掺混比、生物质种类、温度、反应气氛等因素对煤混燃生物质时NO_2释放规律的影响。结果表明:增大秸秆掺混比例,使NO_2瞬时释放峰值、释放总量增大,转化率提高。改变混燃生物质种类时,随着生物质中Fe_2O_3、CaO等矿物质含量的减小,NO_2释放总量、转化率增大。升高温度能加快NO_2生成速率,同时提高NO_2还原速率,但在800℃以上的高温下,后者增加程度高于前者,造成NO_2释放总量及转化率先增大后减小。O_2/N_2气氛下,提高O_2浓度能增大NO_2转化率与释放总量,而O_2/CO_2气氛下由于焦炭气化反应及还原作用的影响,提高O_2浓度会造成相反的趋势。  相似文献   

18.
在中试规模流化床上研究稻壳与木屑、空气当量比ER及气化温度(650-800℃)对气化特性的影响。结果表明:木屑、稻壳在ER为0.2左右时达到最佳气化工况,热值分别为5.39 MJ/m~3、6.04 MJ/m~3,气化效率分别为46.15%、51.91%;随着ER的增大,气化炉温度呈现先增加后减小趋势,过高或过低的ER都不利于生物质气化反应;随着温度的增加,合成气可燃组分增加,CO_2组分减小,气体热值、气化效率上升。  相似文献   

19.
对安徽区域内的生物质调研取样并进行工业分析、元素分析和气化特性分析。利用模型对不同生物质气化过程进行模拟计算,得到生物质含水率M_(ad)、气化温度T和气化剂当量比ER对生物质气组分、低位发热量、气化热效率和气化产率的影响。对秸秆类生物质,在气化条件为:M_(ad)0.1,ER=0.24~0.30,T=600℃~750℃下,可获得综合指标较好的生物质气,如当涂水稻秸秆在M_(ad)=0.05,ER=0.25,T=690℃条件下,获得生物质气的综合指标最佳。对水稻、小麦秸秆等生物质气化炉设计和运行具有指导意义。  相似文献   

20.
以玉米秸秆在流化床中空气-水蒸气气化所形成的焦油为研究对象,应用凝胶渗透色谱结合光电二极管阵列检测仪(GPC-PDA)分析在800℃和900℃时添加不同量的水蒸气后焦油的分子量分布及其组成结构,焦油在不同温度发生的主要化学反应,进而分析得出秸秆气化焦油的形成途径。研究结果表明:水蒸气添加量的改变不能改变气化焦油的分子量分布及结构特征,在800℃时,秸秆气化焦油主要发生缩合反应,以450~240 amu的带/不带共轭侧链的多环芳香族化合物为主要组分。在900℃时,气化焦油以裂解反应为主,分子量小于130 amu的化合物在焦油组分中占60%,由1-2环的芳香族化合物或带有氧原子的芳杂环组成,共轭链烃结构较少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号