首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Five new glycosides, quercetin 3′-O-β-d-galactopyranoside (1), quercetin 3-O-(2″-acetyl)-β-d-glucopyranoside (2), 4,6-dihydroxy-2-methoxyphenyl 1-O-β-d-glucopyranoside (3), 4-hydroxy-2,6-dimethoxyphenyl 1-O-α-l-rhamnopyranosyl (1 → 6)-β-d-glucopyranoside (4) and 3-methyl-but-2-en-1-yl β-d-glucopyranosyl (1 → 6)-β-d-glucopyranoside (5), were isolated from Hypericum erectum Thunb. Their structures were established on the basis of spectral and chemical data.  相似文献   

2.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

3.
A new (Z)-3-hexenyl O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside was isolated from the aerial part of Spermacoce laevis, along with 17 known compounds: (6S,9R)-roseoside, (Z)-3-hexenyl O-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, (Z)-3-hexenyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-β-d-glucopyranoside, phenyethyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, phenyethyl O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside, benzyl O-β-d-xylopyranosyl-(1→6)-β-d-glucopyranoside, asperuloside, 6α-hydroxyadoxoside, asperulosidic acid, kaempferol 3-O-β-d-glucopyranoside, kaempferol 3-O-rutinoside, quercetin 3-O-β-d-galactopyranoside, quercetin 3-O-α-l-rhamnopyranosyl-(1→6)-β-d-galactopyranoside, and rutin. The structure determinations were based on physical data and spectroscopic evidence.  相似文献   

4.
Two new flavonol glycosides were isolated from the 1-butanol (1-BuOH)-soluble fraction of a methanol (MeOH) extract of the leaves of Indigofera zollingeriana, along with four flavonol glycosides and three known megastigmane glucosides. The structures of the new compounds were elucidated by spectroscopic analyses as kaempferol 3-O-β-d-(2″-O-β-d-apiofuranosyl)glucopyranoside 7-O-α-l-rhamnopyranoside and 3-O-β-d-(2″-O-β-d-apiofuranosyl, 6″-O-α-l-rhamnopyranosyl)glucopyranoside 7-O-α-l-rhamnopyranoside.  相似文献   

5.
From the leaves of Brassica juncea, three kaempferol glycosides, kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranoside (1), kaempferol-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), and kaempferol-3-O-(2-O-sinapoyl)-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside-7-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (3) were isolated and the structures elucidated on the basis of spectral and chemical evidences. Antioxidant activities were determined by measuring the scavenging activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and peroxynitrite (ONOO). Compounds 1 and 3 showed good antioxidant activities with respective IC50 values of 28.61 and 36.93 μM toward DPPH; respective IC50 values of 9.79 and 11.40 μM toward ONOO. However, compound 2 showed no DPPH scavenging activity and weak ONOO scavenging activity with an IC50 value of 32.00 μM.  相似文献   

6.
From dried whole plants of Glechoma hederacea L. (Labiatae), seven known glycosides were isolated and identified: (6R,7E,9R)-megastigma-4,7-dien-3-one 9-O-β-d-glucopyranoside (1), apigenin 7-O-neohesperidoside (2), chrysoeriol 7-O-neohesperidoside (3), (+)-pinoresinol 4,4′-bis-O-β-d-glucopyranoside (4), (+)-syringaresinol 4,4′-bis-O-β-d-glucopyranoside (5), (+)-lariciresinol 4,4′-bis-O-β-d-glucopyranoside (6), and (7R,8R)-threo-7,9,9′-trihydroxy-3,3′-dimethoxy-8-O-4′-neolignan 4-O-β-d-glucopyranoside (7).  相似文献   

7.
A new flavonol galloylrhamnoside, kaempferol 3-O-(2″,3″-di-O-galloyl)-α-l-rhamnopyranoside, and a new lignan glycoside, hinokinin 7-O-β-d-glucopyranoside were isolated from the leaves of Koelreuteria henryi, along with 18 known compounds, including six flavonol glycosides (38), three lignans (911), four chlorophyll derivatives (1215), two steroids (16, 17), and three aromatic compounds (1820). The structures were determined on the basis of spectral analysis and chemical evidence. The scavenging effect of 18 and 20 on the stable free radical 1,1-diphenyl-2-picrylhydrazyl was examined. Compounds 1, 5, 6, and 20 showed more potent activity than that of trolox.  相似文献   

8.
Two new maltol glycosides, maltol 6′-O-β-d-apiofuranosyl-β-d-glucopyranoside and maltol 6′-O-(5-O-p-coumaroyl)-β-d-apiofuranosyl-β-d-glucopyranoside, were isolated from Elsholtzia rugulosa Hemsl. along with 11 known compounds including prunasin and amygdalin. The structures were determined on the basis of spectroscopic and chemical evidence. This is the second example of isolation of cyanogenic glycosides from Lamiaceous plants.  相似文献   

9.
From the ethyl acetate fraction of the methanol extract of the needles of Pinus densiflora (Pinaceae), a new diterpenoid glucoside [9α,13α-epoxy-8β,14β-dihydroxy-abietic acid-18-O-β-d-glucopyranoside] (1), two flavonoid glucosides [kaempferol 3-O-β-d-glucoside (2) and 6-C-methyl kaempferol 3-O-β-d-glucoside (3)], and two monoterpenoid glucosides [bornyl 6-O-α-Larabinofuranosyl (1→6)-β-d-glucopyranoside (4) and bornyl 6-O-β-d-apiofuranosyl (1→6)-β-d-glucopyranoside (5)] were isolated and characterized on the basis of spectral analysis. Of all the compounds, 2 and 3 showed peroxynitrite scavenging activity.  相似文献   

10.
Seven known lignan glycosides were isolated from the leaves of Osmanthus heterophyllus: (+)-syringaresinol 4-O-β-d-glucopyranoside, (+)-syringaresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4, 4′-O-di-β-d-glucopyranoside, (+)-medioresinol 4-O-β-d-glucopyranoside, (+)-pinoresinol 4, 4′-O-β-d-glucopyranoside, (+)-epipinoresinol 4-O-β-d-glucopyranoside and phillyrin. Their structures were determined on the basis of spectral data.  相似文献   

11.
Five novel phenolic glycosides, adenophorasides A (1), B (2), C (3), D (4), and E (5), were isolated from commercial Adenophora roots, together with vanilloloside (6), 3,4-dimethoxybenzyl alcohol 7-O-β-d-glucopyranoside (7), and lobetyolin (8). The structures of the new compounds (15) were characterized as 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranoside (1), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (2), 4-hydroxy-3-methoxyphenylacetonitrile 4-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (3), 4-hydroxyphenylacetonitrile 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (4), and 4-hydroxy-3-methoxybenzyl alcohol 4-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranoside (5), respectively, by means of spectroscopic and chemical analyses.  相似文献   

12.
Two new neolignan glycosides, (7R, 8R)-threo-guaiacylglycerol-8-O-4′-sinapyl ether 7-O-β-d-glucopyranoside (1) and (7S, 8R)-5-methoxydehydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (2), and four known ones (36), were isolated from the leaves of Osmanthus heterophyllus. The structures of compounds 16 were established on the basis of spectral and chemical data.  相似文献   

13.
A new prenylated flavonoid (1) and two new aliphatic glycosides (2, 3) have been isolated from leaves of Euodia meliaefolia (Hance) Benth., together with three known compounds, (2R,3R)-5,7,4′-trihydroxy-8-(3-methylbut-2-enyl)dihydroflavonol 7-O-β-d-glucopyranoside (phellamurin) (4), (2R,3R)-dihydroquercetin 3′-O-β-d-glucopyranoside (5), and (7R,8S)-dihydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (6). Their structures were determined on the basis of the results of spectroscopic analysis.  相似文献   

14.
A new compound named pinoresinol 4-O-α-l-rhamnopyranosyl (1 → 2)-β-d-glucopyranoside (1) together with six known compounds, isolariciresinol 9-O-β-D-glucopyranoside (2), apigenin 6,8-di-C-β-d-glucopyranoside (3), luteolin 7-O-neohesperidoside (4), luteolin 7-O-β-d-glucopyranoside (5), 5-methoxyluteolin 7-O-β-d-glucopyranoside (6), and rutin (7), were isolated from the aerial parts of Urtica laetevirens Maxim. All of the above compounds were isolated from this plant for the first time.  相似文献   

15.
A 5,11-epoxymegastigmane glucoside (asysgangoside) was isolated from the aerial parts of Asystasia gangetica together with the known compounds, salidroside, benzyl β-d-glucopyranoside, (6S,9R)-roseoside, ajugol, apigenin 7-O-β-d-glucopyranoside, apigenin 7-O-neohesperidoside, and apigenin 7-O-β-d-glucopyranosyl (1→6)-β-d-glucopyranoside. The structure elucidations were based on spectroscopic evidence.  相似文献   

16.
One new chromone and six known flavonol glycosides were isolated from the stems and leaves of Delphinium hybridum cv. “Belladonna Casablanca” (Ranunculaceae). The new chromone glycoside was elucidated as 2-methyl-chromone-5,7-diol 7-O-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside (1). The six known flavonol glycosides were designated as compounds 25, being kaempferol-type glycosides, and compounds 6 and 7, being quercetin-type glycosides. The structures of these glycosides were determined by two-dimensional nuclear magnetic resonance (2D NMR) spectroscopic analysis and chemical evidence.  相似文献   

17.
Six compounds were isolated from the leaves and branches of Dioecrescis erythroclada and identified as apodanthoside, mussaenoside, gardenoside, benzyl alcohol O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, phenethyl alcohol O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside, and oct-1-en-3-ol α-l-arabinopyranosyl-(1→6)-β-d-glucopyranoside. The structures were determined based on physical data and spectroscopic evidence.  相似文献   

18.
Thirteen compounds (113) were isolated from a MeOH extract of leaves of Glochidion rubrum. The structures of four new compounds were elucidated to be (−)-isolariciresinol 2a-O-β-d-glucopyranoside (1), (7R,8S)- and (7R,8R)-4,7,9,9′-tetrahydroxy-3,3′-dimethoxy-8-O-4′-neolignan 7-O-β-d-glucopyranosides (2 and 3, respectively), and tachioside 2′-O-4″-O-methylgallate (4) on detailed inspection of one- and two-dimensional NMR spectral data.  相似文献   

19.
In an ongoing project directed toward the discovery of novel treatments for diabetic complications from traditional herbal medicines, fifteen compounds, apigenin (1), apigenin-7-O-β-d-glucopyranoside (2), apigenin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (3), luteolin (4), luteolin-7-O-β-d-glucopyranoside (5), luteolin-7-O-(6″-O-acetyl)-β-d-glucopyranoside (6), isorhamnetin-3-Oneohesperidoside (7), 4-O-caffeoylquinic acid (8), chlorogenic acid methyl ester (9), 4-O-β-d-glucopyranosylcaffeic acid (10), lobetyolin (11), cordifolioidyne C (12), isomultiflorenyl acetate (13), β-sitosterol glucoside (14), and α-spinosterol (15), were isolated from an EtOAc-soluble fraction of the flowers of Platycodon grandiflorum (balloonflower; Campanulaceae). The structures of the compounds were identified by physical and spectroscopic methods, as well as by comparison of their data with literature values. All the isolates were evaluated in vitro for inhibitory activity on the formation of advanced glycation end products and rat lens aldose reductase.  相似文献   

20.
By various chromatographic methods, three flavonoids, (2S)-naringenin (1), isorhamnetin 3-O-(2-O-α-l-rhamnopyranosyl) β-d-glucopyranoside (2), typhaneoside (3), and two sterol glycosides, β-sitosterol-3-O-(6-octadecanoyl) β-d-glucopyranoside (4) and β-sitosterol-3-O-(6-octadeca-9Z,12Z-dienoyl) β-d-glucopyranoside (5), were isolated from the pollen of Typha angustata. Their structures were determined on the basis of spectroscopic analyses. The flavonoids (13) were evaluated for their effects on the viability and proliferation of rat aortic smooth muscle cells. (2S)-naringenin (1) significantly inhibited cell proliferation in a dose-dependent manner without cytotoxic at concentrations of 30, and 50 μM; it reduced the number of cells following PDGF-BB treatment to 1.83 ± 0.30 × 104 and 2.20 ± 0.60 × 104 cells/well, respectively. These findings suggest that (2S)-naringenin has antiproliferative effects on aortic smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号