首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
利用超音速火焰喷涂(HVOF)技术制备了普通、超细纳米WC-17Co涂层.研究了喷涂粉末、涂层的微观组织结构和物相成分,测试了涂层的显微硬度、弹性模量、断裂韧性.研究表明,纳米WC-17Co涂层中形成了纳米尺度的胞状结构和长条状结构,并有网状的非晶结构生成.WC-17Co涂层表面均匀致密,3种涂层均是由熔化再结晶区、半熔化区和未熔化区等构成.涂层中条带结构不明显,明显区别于等离子涂层.纳米涂层组织结构更致密,碳化物颗粒分布更均匀.3种涂层中,WC都是主相,W2C、Co6W6C的含量很少.纳米涂层的显微硬度、弹性模量、断裂韧性最高.  相似文献   

2.
爆炸喷涂法制备亚微米WC-12%Co涂层的研究   总被引:1,自引:0,他引:1  
采用爆炸喷涂法制备了含12%(质量分数)Co亚微米WC涂层,研究了涂层的表面形貌、组织结构、相组成,并与大气等离子体喷涂法制备的涂层进行了比较.研究结果表明,爆炸喷涂法制备的WC-12%Co涂层组织均匀,涂层截面层状结构不明显,粘结相Co发生了熔化,但WC粒子并没有熔化;与传统微米级WC涂层相比,亚微米WC涂层脱碳程度较重,涂层中含有WC相、W2C相、Co相、Co3W3C相以及少量W相,主相仍为WC相.与大气等离子体喷涂法制备的涂层相比,爆炸喷涂法制备的涂层脱碳程度较轻.  相似文献   

3.
为了提高WC-12Co涂层的喷涂质量,采用大气等离子喷涂(APS)方法在Q235钢基体上制备WC-12Co复合涂层,探讨了不同工艺参数下涂层的组织与性能,用扫描电镜(SEM)、X射线衍射仪(XRD)和能谱仪(EDS)研究涂层形貌和微观组织及涂层成分演变规律,采用显微硬度计测试涂层显微硬度。结果表明:涂层主要由WC和W2C以及少量的Co3W3C和Co6W6C相组成;涂层主要以机械结合方式为主,厚度大约在300μm,粘结层厚度约为60μm。该试验最优工艺参数为电流300 A,送粉率50 g/min,喷涂距离110 mm;优化后涂层硬度为1 169HV0.5 N,孔隙率为3.6%。  相似文献   

4.
为了拓展铝合金在汽车工业上的应用,基于“第聂伯Ⅲ”设备采用爆燃喷涂技术以不同氧燃比在喷射沉积制备的铝合金活塞材料表面制备了WC-12Co和WC-17Co涂层,比较了2种涂层的显微形貌、相结构、结合强度、孔隙率、开裂韧性及磨粒磨损性能.结果表明:与WC-17Co涂层相比,WC-12Co喷涂层中WC脱碳程度轻,粘结相Co的名义自由路径较小,磨粒对粘结相的刮削作用弱,最终WC颗粒抵抗了磨粒磨损,因而具有更好的抗磨粒磨损性能;WC-12Co喷涂层的结合力、硬度也优于WC-1 7Co喷涂层.  相似文献   

5.
冷喷涂WC-Co涂层的组织结构和性能研究   总被引:1,自引:0,他引:1  
以微米WC-12Co、纳米WC-17Co和WC-23Co三种团聚烧结粉末为原料,进行冷喷涂沉积涂层实验,通过扫描电镜、X射线衍射仪分别分析了涂层的组织结构和相结构,运用压痕法测定了涂层的显微硬度、弹性模量和断裂韧性,并通过销-盘磨损实验测定了涂层的耐磨损性能.实验表明,三种粉末所沉积的WC-Co涂层均具有致密的组织结构,涂层保持与原始粉末相同的相结构,黏结相Co由于强烈塑性变形发生了同素异构转变,涂层组织无传统层状结构,WC硬质相发生了局部流动和再分布.对于纳米WC-Co涂层,随着黏结相含量增加,涂层硬度和弹性模量降低、断裂韧性增加,相对于316L不锈钢,冷喷涂WC-Co涂层表现出了优异的耐磨损性能,涂层磨损失效机理主要为磨粒对涂层的切削作用.  相似文献   

6.
在不同氧气流量(322 L/min、402 L/min、482 L/min和543 L/min)条件下,将多尺度WC-17Co粉末(60%(质量分数)纳米WC和40%(质量分数)微米WC陶瓷颗粒)通过超音速火焰(HVOF)喷涂技术在Q235钢基体上制备WC-17Co金属陶瓷涂层。采用扫描电镜(SEM)和X-射线衍射技术(XRD)分别对涂层的组织形貌和物相进行分析,并测试了涂层的硬度值和耐磨损性能。结果表明,随着氧气流量降低,涂层中WC颗粒分解更为严重,在氧气流量为322 L/min时,涂层中WC陶瓷相最少。HVOF喷涂过程中氧气流量对最终形成的涂层中W、W2C与Co3W3C相的含量及涂层的硬度值和耐磨损性能有重要影响,其与前者呈负相关,与后二者呈正相关。当氧气流量控制在543 L/min时,HVOF喷涂形成的涂层中主要物相仍为WC相;通过硬度测试发现,随着氧气流量增加,涂层的硬度值逐渐增加,在氧气流量为543 L/min时,涂层具有最高硬度值((979±52. 9) Hv0. 3)和仅为(6. 6±0. 57) mg的磨损失重量。  相似文献   

7.
两种AC-HVAF喷涂WC涂层微观组织以及耐蚀性研究   总被引:1,自引:0,他引:1  
利用AC-HAVF喷涂技术在0Cr13Ni5Mo不锈钢上制备了WC-10Co-4Cr,WC-12Co涂层,并利用XRD,SEM,电化学以及盐雾实验分析了涂层的微观组织以及耐蚀性.结果表明:两种涂层相组成与其粉末一致,未出现其他喷涂技术普遍存在的W2C以及W,AC-HAVF喷涂技术可以有效的抑制WC的分解;两种涂层都很致密且与基体结合良好,孔隙率低;电化学以及盐雾实验发现,WC-10Co-4Cr涂层的耐蚀性好于WC-12Co涂层,并较基体0Cr13Ni5Mo不锈钢有较大的提高,粘结相中Cr元素的加入以及孔隙率低是WC-10Co-4Cr涂层耐蚀性优异的重要原因.  相似文献   

8.
WC-M纳米复合涂层的制备方法及其组织、性能   总被引:1,自引:0,他引:1  
王宇栋  王飚 《纳米科技》2006,3(3):43-48
报道了国内外有关WC—M纳米涂层的原料制备、喷涂技术和涂层的显微结构及性能特点。其中包括nWC—Co纳米涂层的超音速喷涂、等离子喷涂、冷喷涂和多模式粉末结构等喷涂方法。综合了若干实验结果表明:与常规涂层相比nWC—Co涂层有更小的空隙度、更合理的组织结构和更高的韧塑性及更高的抗磨蚀能力。  相似文献   

9.
工艺参数对超音速火焰喷涂WC-Co涂层的组织结构、硬度、耐磨性影响较大,但相关研究较少。采用超音速火焰喷涂技术(HVOF)在4种氧气流量(322,402,482,543 L/min)下将多尺度WC-17Co粉末(含30%纳米WC和70%微米WC)喷涂在Q235钢基体表面制备WC-17Co涂层。采用扫描电镜(SEM)和X射线衍射仪(XRD)分析涂层的截面形貌和物相,测试了涂层的硬度值,通过销盘磨损试验机测试涂层的耐磨损性能,研究氧气流量对多尺度WC-17Co涂层组织结构与耐磨性能的影响。结果发现:4种氧气流量下所制备的涂层组织致密,孔隙率为0.306%~1.290%;随着氧气流量降低,涂层中WC分解更严重,当氧气流量为322 L/min时,涂层中分解相(W_2C、W和Co_3W_3C)最多;涂层的硬度随着氧气流量增加而增加,当氧气流量为543 L/min时,涂层的硬度[(933.8±29.3)HV_(3N)]是Q235钢[(183±7)HV_(3N)]的5倍;随着氧气流量增加,涂层磨损失重逐渐减小,当氧气流量为543 L/min时,涂层的磨损失重仅为(8.57±0.95)mg,耐磨损性能较基材明显提高。  相似文献   

10.
爆炸喷涂纳米WC-Co涂层的研究   总被引:3,自引:1,他引:2  
为促进爆炸喷涂法替代常规喷涂工艺在工业上的应用,采用爆炸喷涂法制备了纳米和普通WC-12Co涂层.采用金相显微镜、扫描电镜分析比较了两种涂层的显微组织,用显微硬度计和磨料磨损试验机测试了两种涂层的显微硬度及耐磨料磨损性能,并利用扫描电镜对磨损形貌进行了分析.结果显示,纳米涂层具有比普通涂层更高的致密度和显微硬度,纳米涂层中WC颗粒的分布更均匀;纳米涂层的磨损机理为微观切削机制,其耐磨料磨损性能比普通涂层差.  相似文献   

11.
利用烧结破碎法,以超细晶粒WC粉、Co粉为原料制备了WC-17%Co热喷涂粉末。用X-射线衍射和扫描电子显微镜对粉末的形貌和结构进行了研究,讨论了烧结温度、有机粘结剂、碳粉对粉末特性的影响。实验结果表明:将有机粘结剂添加到粉末中后,可有效地阻止超细WC/Co粉烧结时η相(Co3W3C、Co6W6C)的出现;除极少量碳溶于粘结相Co中外,碳主要以游离态形式存在,可抑止粉末热喷涂时WC的分解;制备超细WC-17%Co热喷涂粉末适宜的烧结温度是在1250℃左右。  相似文献   

12.
In continuous hot-dip galvanization process the corrosion and chemical stability of the sink roll in the galvanizing bath are important problem which effects on the quality and productivity. In order to protect the sink roll the carbide cermet and/or ceramic coatings were deposited on the surface of the sink roll. The WC-, Cr3 C2-cermet coatings were deposited by high velocity oxygen fuel (HVOF) spray, respectively. The coating samples were immersed in molten Zn-alloy containing 50 wt % aluminum at 833 K for 24 hr and 144 hr, respectively. The inter-diffusion and inter-reaction of Zn, Al and elements in coating and corrosion behaviors of these coatings were investigated by XRD, SEM and EPMA etc. The corrosion mechanisms of the carbide cermet coatings and ceramic coatings in molten High Al-Zn-alloy were approached.  相似文献   

13.
采用电火花沉积技术,在铸铁表面制备WC-8Co沉积涂层。利用XRD、SEM、显微硬度计、摩擦磨损试验机研究了涂层的微观组织及耐磨性能。结果表明,通过优化的沉积工艺参数可以获得组织均匀、致密且与基体呈冶金结合的沉积层。沉积层主要由Co3W3C、Fe3W3C、W2C和Fe7W6相组成;沉积层中弥散分布有大量的超细碳化物颗粒。沉积层的最高硬度为1512.1Hv,其耐磨性能是基体的2.3倍;沉积层的磨损机制主要是磨粒磨损和疲劳磨损。涂层中弥散分布的超细硬质相是沉积层硬度及耐磨性能提高的主要因素。  相似文献   

14.
为提高1Cr18Ni9Ti不锈钢在NaCl和酸溶液环境中的耐磨损性能,利用等离子喷涂制备两种晶粒WC-10Co-4Cr涂层,研究其在3.5%(质量分数,下同)NaCl溶液与酸溶液(pH=5.0)中的耐腐蚀性能。结果表明:涂层中含有WC,W_2C,W以及η相(Co_xW_xC)。两种涂层在3.5%NaCl溶液中的腐蚀电位均高于1Cr18Ni9Ti基体的腐蚀电位。在不同温度酸溶液(pH=5.0)中,纳米WC-10Co-4Cr涂层的电位差随温度的变化最小。涂层在NaCl和酸溶液中腐蚀机制分别为:WC-10Co-4Cr涂层表面吸附氧粒子与涂层中的Co和WC在3.5%NaCl溶液中形成电偶;在酸溶液中(pH=5.0),涂层中的Co溶解形成Co2+离子,和WC相直接形成电偶腐蚀,导致涂层表面出现孤立的WC颗粒。  相似文献   

15.
采用超音速火焰(High Velocity Oxygen Fuel,HVOF)喷涂技术在Q235钢基体上制备WC-10Co-4Cr涂层。利用透射电子显微电镜、扫描电子显微电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机等手段对涂层的微观组织结构和摩擦磨损性能进行研究。结果表明:采用HVOF喷涂技术制备的WC-10Co-4Cr涂层结构致密,与基体结合良好,孔隙率为0.67%。涂层中的物相以WC为主,此外还含有少量W2C相和非晶相。涂层的平均显微硬度为1230HV0.3。WC-10Co-4Cr涂层具有良好的耐摩擦磨损性能,累计磨损量(14.4mg)仅为Cr12MoV冷作模具钢的2/5。磨粒磨损为WC-10Co-4Cr涂层的主要磨损机制。  相似文献   

16.
利用原位还原碳化反应合成的超细WC-12Co复合粉末作为原料, 分别添加1.0wt%晶粒长大抑制剂即VC、Cr3C2和NbC, 经团聚造粒和超音速火焰(HVOF)喷涂制备了超细结构的硬质合金涂层。研究了不同晶粒长大抑制剂对涂层的显微组织结构、物相、硬度、耐磨性能和耐蚀性能的影响。结果表明, 与未添加晶粒长大抑制剂涂层相比, 添加1.0wt% VC或Cr3C2制备的硬质合金涂层中WC颗粒的平均尺寸降低了约49%, 涂层硬度明显提高, 磨损速率降低了约52%~55%。添加1.0wt% NbC对制备涂层中WC颗粒尺寸的抑制作用不明显, Co粘结相中由于形成了(W, Nb)C化合物, 其耐蚀性获得显著提高, 但该化合物脆性大, 导致涂层耐磨性不及添加VC和Cr3C2制备的涂层。  相似文献   

17.
为了有效控制烧结过程中WC晶粒的长大,获得高强度高硬度的超细硬质合金,采用扫描电镜、拉伸机和洛氏硬度仪研究了不同质量分数及配比的VC/Cr3C2晶粒长大抑制剂和烧结温度对超细WC-12Co硬质合金的显微组织及力学性能的影响,并结合试验结果分析了超细硬质合金中VC/Cr3C2晶粒长大抑制剂的作用机理.结果表明,添加适量VC/Cr3C2晶粒长大抑制剂的超细硬质合金中WC晶粒尺寸分布集中,不存在明显的组织缺陷,合金具有细而均匀的微观组织及优异的力学性能.当晶粒长大抑制剂(质量分数)为0.2%VC/0.5%Cr3C2,1450℃烧结制备WC-12Co超细硬质合金的抗弯强度为3710MPa,硬度(HRA)为91.5.VC/Cr3C2晶粒长大抑制剂的作用机理为:VC主要与WC反应生成(W,V)C固溶体聚集在WC/Co界面,降低WC/Co界面能,Cr3C2主要固溶在粘结相中,导致WC在粘结相中的溶解度降低,二者的综合作用减缓了粘结相中WC溶解-析出过程,从而抑制烧结过程中WC晶粒的长大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号