首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elimination of antibiotics occurring in the natural environment has become a great challenge in recent years. Among other techniques, the photocatalytic degradation of this type of pollutant seems to be a promising approach. Thus, the search for new photoactive materials is currently of great importance. The present study concerns the sol–gel synthesis of mono, binary and ternary TiO2-based materials, which are used as active photocatalysts. The main goal was to evaluate how the addition of selected components—zirconium dioxide (ZrO2) and/or zinc oxide (ZnO)—during the synthesis of TiO2-based materials and the temperature of thermal treatment affect the materials’ physicochemical and photocatalytic properties. The fabricated mixed oxide materials underwent detailed physicochemical analysis, utilizing scanning-electron microscopy (SEM), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), energy-dispersive X-ray spectroscopy (EDS), low-temperature N2 sorption (BET model), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The synthesized mixed oxide materials were used as photocatalysts in the heterogeneous photodegradation of tetracycline (TC). The physicochemical properties of the fabricated photocatalysts, including morphology, crystalline and textural structure, as well as the pH of the reaction system in the photocatalytic tests, were taken into account in determining their photo-oxidation activity. LC–MS/MS analysis was used to identify the possible degradation products of the selected antibiotic.  相似文献   

2.
The effect of TiO2 nanostructures such as nanoparticles, nanowires, nanotubes on photoanode properties, and dye-sensitized solar cells photovoltaic parameters were studied. The series of dye-sensitized solar cells based on two dyes, that is, commercially N719 and synthesized 3,7′-bis(2-cyano-1-acrylic acid)-10-ethyl-phenothiazine were tested. Additionally, the devices containing a mixture of this sensitizer and chenodeoxycholic acid as co-adsorbent were fabricated. The amount of adsorbed dye molecules to TiO2 was evaluated. The prepared photoanodes with different TiO2 nanostructures were investigated using UV-Vis spectroscopy, optical, atomic force, and scanning electron microscopes. Photovoltaic response of constructed devices was examined based on current-voltage characteristics and electrochemical impedance spectroscopy measurements. It was found that the highest UV-Vis absorption exhibited the photoanode with nanotubes addition. This indicates the highest number of sensitizer molecules anchored to the titanium dioxide photoanode, which was subsequently confirmed by dye-loading tests. The highest power conversion efficiency was (6.97%) for solar cell containing nanotubes and a mixture of the dyes with a co-adsorbent.  相似文献   

3.
A novel Ba(II)/TiO2–MCM-41 composite was synthesized using binary mixtures with Ba2+/TiO2 and MCM-41, and Ba2+ as a doping ion of TiO2. The specific surface area and pore structure characterizations confirm that a mesoporous structure with a surface area of 341.2 m2/g and a narrow pore size distribution ranging from 2 to 4 nm was achieved using Ba(II)/TiO2–MCM-41. Ba(II)/TiO2 particles were synthesized into 10–15 nm particles and were well dispersed onto MCM-41. The diffraction peaks in the XRD patterns of TiO2–MCM-41 and Ba(II)/TiO2–MCM-41 were all attributed to anatase TiO2. By taking advantage of MCM-41 and Ba2+, the photocatalytic performance of Ba(II)/TiO2–MCM-41 was remarkably enhanced by suppressing its rutile phase, by lowering the band gap energy, and by facilitating the dispersion of TiO2. Therefore, the photodegradation efficiencies of p-nitrobenzoic acid (4 × 10−4 mol/L) by various photocatalysts (60 min) under UV light irradiation are arranged in the following order: Ba(II)/TiO2–MCM-41 (91.7%) > P25 (86.3%) > TiO2–MCM-41 (80.6%) > Ba(II)/TiO2 (55.7%) > TiO2 (53.9%). The Ba(II)/TiO2–MCM-41 composite was reused for five cycles and maintained a high catalytic activity (73%).  相似文献   

4.
The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron–hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.  相似文献   

5.
In the present work, TiO2/ZnO hybrid nanosponges have been synthesized for the first time. First, TiO2 nanosponges were obtained by anodization under hydrodynamic conditions in a glycerol/water/NH4F electrolyte. Next, in order to achieve the anatase phase of TiO2 and improve its photocatalytic behaviour, the samples were annealed at 450 °C for 1 h. Once the TiO2 nanosponges were synthesized, TiO2/ZnO hybrid nanosponges were obtained by electrodeposition of ZnO on TiO2 nanosponges using different temperatures, times, and concentrations of zinc nitrate (Zn(NO3)2). TiO2/ZnO hybrid nanosponges were used as photoanodes in photoelectrochemical water splitting tests. The results indicate that the photoelectrochemical response improves, in the studied range, by increasing the temperature and the Zn(NO3)2 concentration during the electrodeposition process, obtaining an increase in the photoelectrochemical response of 141% for the TiO2/ZnO hybrid nanosponges electrodeposited at 75 °C with 10 mM Zn(NO3)2 for 15 min. Furthermore, morphological, chemical, and structural characterization was performed by Field Emission Scanning Electron Microscopy (FE-SEM) with Energy Dispersive X-Ray spectroscopy (EDX), Raman Confocal Laser Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), and Grazing Incidence X-Ray Diffraction (GIXRD).  相似文献   

6.
Fe–doped titanium dioxide–carbonized medium–density fiberboard (Fe/TiO2–cMDF) was evaluated for the photodegradation of methylene blue (MB) under a Blue (450 nm) light emitting diode (LED) module (6 W) and commercial LED (450 nm + 570 nm) bulbs (8 W, 12 W). Adsorption under daylight/dark conditions (three cycles each) and photodegradation (five cycles) were separately conducted. Photodegradation under Blue LED followed pseudo-second-order kinetics while photodegradation under commercial LED bulbs followed pseudo-first-order kinetics. Photodegradation rate constants were corrected by subtracting the adsorption rate constant except on the Blue LED experiment due to their difference in kinetics. For 8 W LED, the rate constants remained consistent at ~11.0 × 10−3/h. For 12 W LED, the rate constant for the first cycle was found to have the fastest photodegradation performance at 41.4 × 10−3/h. After the first cycle, the rate constants for the second to fifth cycle remained consistent at ~28.5 × 10−3/h. The energy supplied by Blue LED or commercial LEDs was sufficient for the bandgap energy requirement of Fe/TiO2–cMDF at 2.60 eV. Consequently, Fe/TiO2–cMDF was considered as a potential wood-based composite for the continuous treatment of dye wastewater under visible light.  相似文献   

7.
Self-cleaning applications using TiO2 coatings on various supporting media have been attracting increasing interest in recent years. This work discusses the issue of self-cleaning textile production on an industrial scale. A method for producing self-cleaning textiles starting from a commercial colloidal nanosuspension (nanosol) of TiO2 is described. Three different treatments were developed for purifying and neutralizing the commercial TiO2 nanosol: washing by ultrafiltration; purifying with an anion exchange resin; and neutralizing in an aqueous solution of ammonium bicarbonate. The different purified TiO2 nanosols were characterized in terms of particle size distribution (using dynamic light scattering), electrical conductivity, and ζ potential (using electrophoretic light scattering). The TiO2-coated textiles’ functional properties were judged on their photodegradation of rhodamine B (RhB), used as a stain model. The photocatalytic performance of the differently treated TiO2-coated textiles was compared, revealing the advantages of purification with an anion exchange resin. The study demonstrated the feasibility of applying commercial TiO2 nanosol directly on textile surfaces, overcoming problems of existing methods that limit the industrial scalability of the process.  相似文献   

8.
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3 and Cl) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that “non-conventional” mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.  相似文献   

9.
In this study, Bi-doped SrTiO3 perovskites (Sr1−xBixTiO3, x = 0, 0.03, 0.05, 0.07 and 0.1) were synthesized using the solid-state method, characterized, and tested as photocatalysts in the degradation of the azo dye acid orange 7 (AO7) under visible light. The perovskites were successfully synthesized, and XRD data showed a predominant, well-crystallized phase, belonging to the cubic perovskite symmetry. For the doped samples, a minority phase, identified as bismuth titanate, was detected. All doped samples exhibited improved photocatalytic activity under visible light, on the degradation of AO7 (10 mg L−1), when compared with the undoped SrTiO3, with an increase in relative Abs484 nm decay from 3.7% to ≥67.8% after 1 h, for a powder suspension of 0.2 g L−1. The best photocatalytic activity was exhibited by the Sr0.95Bi0.05TiO3 perovskite. Reusability studies showed no significant loss in photocatalytic activity under visible light. The final solutions showed no toxicity towards D. magna, proving the efficiency of Sr0.95Bi0.05TiO3 as a visible-light-driven photocatalyst to degrade both the AO7 dye as well as its toxic by-products. A degradation mechanism is proposed.  相似文献   

10.
Photocatalytic water splitting for hydrogen production via heterojunction provides a convenient approach to solve the world crises of energy supply. Herein, graphene quantum dots modified TiO2 hybrids (TiO2-GQDs) with a “caterpillar”-like structure exhibit stronger light absorption in the visible region and an enhanced hydrogen production capacity of about 3.5-fold compared to the pristine TiO2 caterpillar. These results inferred that the addition of GQDs drastically promotes the interfacial electron transfer from GQDs to TiO2 through C–O–Ti bonds via the bonding between oxygen vacancy sites in TiO2 and in-plane oxygen functional groups in GQDs. Using a “caterpillar”-like structure are expected to provide a new platform for the development of highly efficient solar-driven water splitting systems based on nanocomposite photocatalyst.  相似文献   

11.
The paper presents the results of a study of the microstructure and selected properties of silver-based composites reinforced with TiO2 nanoparticles, produced by the powder metallurgy method. Pure silver powders were mixed with TiO2 reinforcement (5 and 10 wt%) and 5 mm steel balls (100Cr6) for 270 min in a Turbula T2F mixer to produce a homogeneous mixture. The composites were made in a rigid die with a single-action compaction press under a pressure of 400 MPa and 500 MPa and then sintered under nitrogen atmosphere at 900 °C. Additionally, to improve the density and mechanical properties of the obtained sinters, double pressing and double sintering operations were conducted. As a result, compacts with a density of 90–94% were obtained. The microstructure of the sintered compacts consists of uniform grains, and the TiO2 reinforcement phase particles are located on the grain boundaries. There were no discontinuities at the Ag–TiO2 contact boundary, which was confirmed by SEM and TEM analysis. The use of a higher pressure had a positive effect on the hardness and flexural strength of the tested materials. It was found that the composites with 5 wt% TiO2 pressed under 500 MPa are characterized by the highest level of mechanical properties. The hardness of these composites is 57 HB, while the flexural strength is 163 MPa.  相似文献   

12.
The first-principles calculation was used to explore the effect of a bimetallic dimer-embedded anatase TiO2(101) surface on CO2 reduction behaviors. For the dimer-embedded anatase TiO2(101) surface, Zn-Cu, Zn-Pt, and Zn-Pd dimer interstitials could stably stay on the TiO2(101) surface with a binding energy of about −2.36 eV, as well as the electronic states’ results. Meanwhile, the results of adsorption energy, structure parameters, and electronic states indicated that CO2 was first physically and then chemically adsorbed much more stably on these three kinds of dimer-embedded TiO2(101) substrate with a small barrier energy of 0.03 eV, 0.23 eV, and 0.12 eV. Regarding the reduction process, the highest-energy barriers of the CO2 molecule on the Zn-Cu dimer-embedded TiO2(101) substrate was 0.31 eV, which largely benefited the CO2-reduction reaction (CO2RR) activity and was much lower than that of the other two kinds of Zn-Pt and Cu-Pt dimer-TiO2 systems. Simultaneously, the products CO* and *O* of CO2 reduction were firmly adsorbed on the dimer-embedded TiO2(101) surface. Our results indicated that a non-noble Zn-Cu dimer might be a more suitable and economical choice, which might theoretically promote the designation of high CO2RR performance on TiO2 catalysts.  相似文献   

13.
In the field of orthopedic or dental implants, titanium and its alloys are most commonly used because of their excellent mechanical and corrosion properties and good biocompatibility. After implantation into the patient’s body, there is a high risk of developing bacterial inflammation, which negatively affects the surrounding tissues and the implant itself. Early detection of inflammation could be done with a pH sensor. In this work, pH-sensitive systems based on TiO2-Ru and TiO2-RuO2 combinations were fabricated and investigated. As a base material, Ti-6Al-4V alloy nanostructured by anodic oxidation was used. Ruthenium was successfully deposited on nanotubular TiO2 using cyclic polarization, galvanostatic and potentiostatic mode. Potentiostatic mode proved to be the most suitable. The selected samples were oxidized by cyclic polarization to form a TiO2-RuO2 system. The success of the oxidation was confirmed by XPS analysis. The electrochemical response of the systems to pH change was measured in saline solution using different techniques. The measurement of open circuit potential showed that unoxidized samples (TiO2-Ru) exhibited sub-Nernstian behavior (39.2 and 35.8 mV/pH). The oxidized sample (TiO2-RuO2) containing the highest amount of Ru exhibited super-Nernstian behavior (67.3 mV/pH). The Mott–Schottky analysis proved to be the best method. The use of the electrochemical impedance method can also be considered, provided that greater stability of the samples is achieved.  相似文献   

14.
Photocatalytic degradation of organic pollutants in water is a highly efficient and green approach. However, the low quantum efficiency is an intractable obstacle to lower the photocatalytic efficiency of photocatalysts. Herein, the TiO2/ZnO heterojunction thin films combined with surface oxygen vacancies (OVs) were prepared through magnetron sputtering, which was designed to drive rapid bulk and surface separation of charge carriers. The morphology and structural and compositional properties of films were investigated via different techniques such as SEM, XRD, Raman, AFM, and XPS. It has been found that by controlling the O2/Ar ratio, the surface morphology, thickness, chemical composition, and crystal structure can be regulated, ultimately enhancing the photocatalytic performance of the TiO2/ZnO heterostructures. In addition, the heterojunction thin film showed improved photocatalytic properties compared with the other nano-films when the outer TiO2 layer was prepared at an O2/Ar ratio of 10:35. It degraded 88.0% of Rhodamine B (RhB) in 90 min and 90.8% of RhB in 120 min. This was attributed to the heterojunction interface and surface OVs, which accelerated the separation of electron–hole (e–h) pairs.  相似文献   

15.
Photocatalysis based technologies have a key role in addressing important challenges of the ecological transition, such as environment remediation and conversion of renewable energies. Photocatalysts can in fact be used in hydrogen (H2) production (e.g., via water splitting or photo-reforming of organic substrates), CO2 reduction, pollution mitigation and water or air remediation via oxidation (photodegradation) of pollutants. Titanium dioxide (TiO2) is a “benchmark” photocatalyst, thanks to many favorable characteristics. We here review the basic knowledge on the charge carrier processes that define the optical and photophysical properties of intrinsic TiO2. We describe the main characteristics and advantages of TiO2 as photocatalyst, followed by a summary of historical facts about its application. Next, the dynamics of photogenerated electrons and holes is reviewed, including energy levels and trapping states, charge separation and charge recombination. A section on optical absorption and optical properties follows, including a discussion on TiO2 photoluminescence and on the effect of molecular oxygen (O2) on radiative recombination. We next summarize the elementary photocatalytic processes in aqueous solution, including the photogeneration of reactive oxygen species (ROS) and the hydrogen evolution reaction. We pinpoint the TiO2 limitations and possible ways to overcome them by discussing some of the “hottest” research trends toward solar hydrogen production, which are classified in two categories: (1) approaches based on the use of engineered TiO2 without any cocatalysts. Discussed topics are highly-reduced “black TiO2”, grey and colored TiO2, surface-engineered anatase nanocrystals; (2) strategies based on heterojunction photocatalysts, where TiO2 is electronically coupled with a different material acting as cocatalyst or as sensitizer. Examples discussed include TiO2 composites or heterostructures with metals (e.g., Pt-TiO2, Au-TiO2), with other metal oxides (e.g., Cu2O, NiO, etc.), direct Z-scheme heterojunctions with g-C3N4 (graphitic carbon nitride) and dye-sensitized TiO2.  相似文献   

16.
ST-segment elevation myocardial infarction (STEMI) patients with multivessel disease (MVD) have a higher incidence of slow-flow/no-reflow (SF-NR) phenomenon during primary percutaneous coronary intervention (PPCI) than those with single vessel disease. Currently, no effective tools exist to predict the risk of SF-NR in this population. The present study aimed to evaluate whether CHA2DS2-VASc score can be used as a simple tool to predict this risk.This study consecutively included STEMI patients hospitalized in Beijing Anzhen Hospital from January 2005 to January 2015. Among these patients, 1032 patients with MVD were finally enrolled. Patients were divided into SF-NR (+) group and SF-NR (–) group according to whether SF-NR occurred during PPCI. SF-NR was defined as the thrombolysis in myocardial infarction (TIMI) grade ≤2.There were 134 patients (13%) in the SF-NR (+) group. Compared with the SF-NR (–) group, patients in the SF-NR (+) group are elder, with lower left ventricular ejection fraction and higher CHA2DS2-VASc score. Multiple logistic regression analysis indicated that CHA2DS2-VASc score ≥3 (odds ratio [OR], 2.148; 95% confidence interval [CI], 1.389–3.320; P = .001), current smoking (OR, 1.814; 95% CI, 1.19–2.764; P = .006), atrial fibrillation (OR, 2.892; 95% CI, 1.138–7.350; P = .03), complete revascularization (OR, 2.307; 95% CI, 1.202–4.429; P = .01), and total length of stents ≥40 mm (OR, 1.482; 95% CI, 1.011–2.172; P = .04) were independent risk factors of SF-NR. The incidence of SF-NR in patients with CHA2DS2-VASc score ≥3 was 1.7 times higher than that in patients with CHA2DS2-VASc score <3. Additionally, patients with CHA2DS2-VASc score ≥3 plus ≥2 risk factors have 3 times higher incidence of SF-NR than those with CHA2DS2-VASc score ≥3 plus 0 to 1 risk factor.CHA2DS2-VASc score ≥3 can be used as a simple and sensitive indicator to predict SF-NR phenomenon and guide the PPCI strategy in STEMI patients with MVD.  相似文献   

17.
In this work, a ternary TiO2/Graphene oxide/Polyaniline (TiO2/GO/PANI) nanocomposite was synthesized by in situ oxidation and use as a filler on epoxy resin (TiO2/GO/PANI/EP), a bifunctional in situ protective coating has been developed and reinforced the Q235 carbon steel protection against corrosion. The structure and optical properties of the obtained composites are characterized by XRD, FTIR, and UV–vis. Compared to bare TiO2 and bare Q235, the TiO2/GO/PANI/EP coating exhibited prominent photoelectrochemical properties, such as the photocurrent density increased 0.06 A/cm2 and the corrosion potential shifted from −651 mV to −851 mV, respectively. The results show that the TiO2/GO/PANI nanocomposite has an extended light absorption range and the effective separation of electron-hole pairs improves the photoelectrochemical performance, and also provides cathodic protection to Q235 steel under dark conditions. The TiO2/GO/PANI/EP coating can isolate the Q235 steel from the external corrosive environment, and may generally be regarded a useful protective barrier coating to metallic materials. When the TiO2/GO/PANI composite is dispersed in the EP, the compactness of the coating is improved and the protective barrier effect is enhanced.  相似文献   

18.
Dense Ti3SiC2/ZnO composites were sintered at different temperatures by spark plasma sintering (SPS). The effects of sintering temperature on composition and mechanical properties of Ti3SiC2/ZnO composites were studied. The tribological behaviors of Ti3SiC2/ZnO composites/Inconel 718 alloy tribo-pairs at elevated temperature from 25 °C to 800 °C were discussed. The experimental results showed that the initial decomposition temperature of the Ti3SiC2/ZnO composite was 1150 °C, and Ti3SiC2 decomposed into TiC. When the decomposition temperature was higher than 1150 °C, the compositions of the Ti3SiC2/ZnO composites were Ti3SiC2, ZnO, and TiC. It was found that Ti3SiC2/ZnO composites had better self-lubricating performance than Ti3SiC2 at elevated temperature from 600 °C to 800 °C, which was owing to material transfers of tribo-pairs and sheared oxides generated by tribo-oxidation reactions.  相似文献   

19.
Herein, using black talc as a carrier, a ternary black talc-TiO2/ZnO composite photocatalyst was prepared by the sol-gel method, and the effect of the black talc on the hetero-structure properties of the TiO2 and ZnO was systematically studied. The prepared composite photocatalyst showed an excellent degradation performance of the pollutant, where black talc plays an important role in promoting the interface interaction by enhancing the contact area between the TiO2 and ZnO. Moreover, the free carbon element doping in black talc favors the formation of more oxygen vacancies, thereby improving the response as a photocatalyst in visible light. In addition, the carbon in the black talc can also adsorb organic pollutants and enrich the surroundings of the photocatalyst with pollutants, so it further improves the catalytic efficiency of the photocatalyst. Under UV irradiation, the degradation rate of Rhodamine B on black talc-TiO2/ZnO was found 3.3 times higher than that of black talc-TiO2 with good stability.  相似文献   

20.
A novel g-C3N4/TiO2/hectorite Z-scheme composites with oxygen vacancy (Vo) defects and Ti3+ were synthesized by so-gel method and high temperature solid phase reaction. This composite exhibited high visible photo-catalytic degradation of rhodamine B (RhB). The apparent rate constant of g-C3N4/TiO2/hectorite was 0.01705 min−1, which is approximately 5.38 and 4.88 times that of P25 and g-C3N4, respectively. The enhancement of photo-catalytic efficiency of the composites can be attributed to the great light harvesting ability, high specific surface area and effective separation of electrons(e) and holes(h+). The F element from Hectorite causes the formation of Vo and Ti3+ in TiO2, making it responsive to visible light. The effective separation of e and h+ mainly results from Z-scheme transfer of photo-produced electrons in g-C3N4/TiO2 interface. The composites can be easily recycled and the degradation rate of the RhB still reached 84% after five cycles, indicating its good reusability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号