首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The differential scanning calorimeter (DSC) was used to measure thermal properties of sorghum starch and flour. DSC gelatinization temperatures of 24 nonwaxy sorghum varieties were: To (onset temperature): 71.0 ± 1.0°C; Tp (peak temperature): 75.6 ± 0.9°C and Te (end temperature): 81.1 ± 1.1°C, respectively. The gelatinization energies ranged from 2.51 to 3.96 cal/g. There were no consistent relationships between DSC gelatinization temperatures or gelatinization energies and grain characteristics or physicochemical starch properties. DSC gelatinization temperature for nonwaxy, heterowaxy and waxy sorghum tended to increase as the number of waxy alleles (wx) increased. However, it appeared that at least a difference of two waxy alleles was required before differences in thermal properties of the samples were significant.  相似文献   

2.
Starches isolated from the bulbs of Pueraria lobata (Willd.) Ohwi (PLO) and Pueraria thomsonii Benth. (PTB) were hydrolysed by glucoamylase for different lengths of time (2, 4, 8, 12, and 24 h). The hydrolysis results were compared by scanning electron microscope (SEM), X‐ray power diffractometer (XRD), and differential scanning calorimetry (DSC). The SEM results revealed that both of the PLO and PTB starches showed the same hydrolysis mechanism, which indicated that the glucoamylase primarily attacking the exterior of starch granules and then the interior. The results of XRD revealed the crystalline type of PTB starch changed from C‐type to A‐type with crystallinity reducing from 43.5 to 20.9% during the hydrolysis. Unlike PTB starch, the PLO starch did not show marked changes in crystalline style but lower degree of crystallinity was obtained from 32.4 to 13.7% during the hydrolysis. All the XRD results demonstrated that B‐type polymorph was preferentially degraded than A‐type polymorph in the C‐type starch. The DSC results revealed that both of the PLO and PTB starches showed decreased enthalpy of gelatinization (ΔHgel) and gelatinization temperature range (R)‐value after hydrolysis, while the gelatinization temperature (Tp) indicated different tendency, initially ranging from 68.6 to 64.3°C and then increasing to 67.8°C for PLO starch. While for PTB starch, the Tp‐value showed progressive reduction from 85.4 to 74.3°C during the whole process.  相似文献   

3.
Antiaris africana seeds yielded 29.6% starch which showed appreciable high contents of ash, protein, and fat. The average diameter of A. africana starch granules was 3.98 µm compared to 8.93 µm for maize starch. A. africana starch had a C‐type XRD pattern and crystallinity of 41.5%. A. africana starch had higher AM content (24.1%) than maize starch (20.9%). The gelatinization onset temperature of A. africana starch (66.7°C) was higher than maize starch (63.1°C), but its gelatinization temperature range (8.57°C) and enthalpy (13.97 J/g) were lower than the values for maize starch (14.02°C, 14.65 J/g). The pasting temperature (Pt) and setback (Vs) were lower and breakdown (Vb) higher for A. africana starch (Pt = 82.5°C, Vs = 173.8 RVU, and Vb = 121.42 RVU) than for maize starch (Pt = 84.9°C, Vs = 183.73 RVU, and Vb = 78.58 RVU). The GPC analysis gave Mw of 2.18 × 107 g/mol and radius of gyration of 95.1 nm for Antiaris starch. Antiaris starch paste exhibited poor freeze‐thaw stability but its small granule size indicates potential for application as dusting starch.  相似文献   

4.
The effect of starch gelatinization on glass transitions in a starch/water model system and how the concentrations of added solutes (sucrose and sodium chloride) affect the glass transition temperatures of the gelatinized starch solution was investigated. The starch suspension samples were heat treated in a Differential Scanning Calorimeter (DSC) under different time and temperature regimes to achieve different degrees of gelatinization. The gelatinization characteristics (onset, peak and end temperatures and enthalpy) and the glass transition values of a potato starch were determined using the DSC. The results showed that the starch concentrations had no effect on gelatinization characteristics and the Tg′ of the gelatinized potato starch but had clearly increased their ΔCp in the Tg′ region. Annealing at a temperature slightly below the Tg′ of −5 °C, led to maximal freeze‐concentration in the total/partial gelatinized starch and a higher Tg′ value at about −3 °C was obtained. The Tg′ values of the totally gelatinized starch samples were slightly lower than those of partially gelatinized samples. The Tg′ of the gelatinized starch decreased with increasing concentrations of sucrose or sodium chloride. Sodium chloride had a stronger depressing effect on Tg′ than sucrose. © 2000 Society of Chemical Industry  相似文献   

5.
Starches from amaranth (Amaranthus cruentus) and quinoa (Chenopodium quinoa) were isolated and investigated by using enzymatic assay, Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). Amylose content measured enzymatically was 7.8 and 11.2 % for amaranth and quinoa starch, respectively. Quinoa starch was much more viscous than amaranth starch and gelatinized at a lower temperature as determined with RVA. DSC demonstrated a wider gelatinization temperature range for amaranth starch (20.6°C) than for quinoa starch (11.1°C). SEM observation revealed polygonal shape of starch granules, and XRD suggested a typical Atype diffraction pattern for both the starches in question. A crystallinity of 45.5 % for amaranth and 35.4 % for quinoa starch, respectively, was also determined from the XRD collected data.  相似文献   

6.
A mixture of waxy maize starch and water (1:2, w/w) was heated in a differential scanning calorimeter (DSC) pan to different temperatures to obtain different degrees of gelatinization. Each pan was then quenched to ‐30°C and rescanned, and the subzero glass transition temperature (Tg′) of the content was determined. A three‐phase model of a starch granule—a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase—was used to interpret results and explain the glass transitions in starch. Waxy maize starch had an onset gelatinization temperature (To) of 61.5°C, peak temperature (Tp) of 70.3°C, and completion temperature (Tc) of 81.7°C. The Tg′ was clearly noted after the starch and water mixture was heated to Tp and Tc, but was small and barely observable when the mixture was heated up to To and immediately cooled to ‐30°C. When the starch and water mixture was heated to 55°C, which was 6°C below the To, and held for 2 h, a Tg′ was observed. Moreover, Tg′ began to appear and was observable if the starch and water mixture was heated to 10°C below gelatinization onset temperature (51°C) and annealed for 2 h without any gelatinization. Further holding at ‐7°C showed a clear subzero glass transition of annealed native starch granules.  相似文献   

7.
Starches having A‐ and B‐type X‐ray diffraction patterns (A‐ and B‐type starches) were modified by heating at 120 °C for 2 h (HT), vacuum drying at room temperature for 20 h (VD) and steeping at 50 °C for 20 h (ST). The properties of starches were compared using differential scanning calorimetry (DSC) and dynamic viscoelasticity behavior during heat processing (G' behavior). As observed by DSC, HT rarely changed the gelatinization properties for A‐type starches, but decreased the gelatinization temperatures and enthalpies (ΔH) for B‐type starches. A shift of the X‐ray diffractograms from B‐type to A‐type patterns was not detected after HT. Similar changes in gelatinization properties were observed for B‐type starches after VD. ST increased the gelatinization temperatures and also narrowed the gelatinization temperature range irrespective of crystal type. Both HT and VD decreased the peak temperature (Tp) in G' behavior and increased the peak G' value for B‐type starches. ST increased Tp and also decreased the peak G' value irrespective of starch crystal type. G' values after reaching Tp — which indicate the viscoelasticity of the swollen starch granules without breakdown — showed significant increases only for B‐type starches after HT.  相似文献   

8.
Starch extracted from Chinese yam was characterized by scanning electron microscope (SEM), X‐ray powder diffractometer (XRD), and differential scanning calorimeter (DSC) in the process of enzymatic hydrolysis. Yam starch was digested by α‐amylase and gluco‐amylase for different lengths of time, respectively, and two different enzymatic hydrolysis results were compared. The most notable phenomenon revealed by SEM after α‐amylase hydrolysis was the formation of the cavum in the center of the starch granules, while after gluco‐amylase hydrolysis, the outer layer of the granules was peeled off and then some granules even broke into pieces. The XRD of the two enzyme hydrolyzed starches revealed the crystal type of the starch changed from typical C‐type XRD pattern to the representative A‐type pattern in the process of enzymatic hydrolysis. The above results also demonstrated that the partially B‐type polymorph was more easily degraded than A‐type. The thermal result showed that the modified yam starches by both enzymes exhibited increased peak gelatinization temperatures (Tp) and decreased gelatinization enthalpy (ΔH).  相似文献   

9.
Native wheat starch contains amylose‐lipid complexes (AMLs) that are formed both upon biosynthesis of native starch and upon heating of starch slurries at gelatinization temperature and above. These complexes have a detrimental impact on physicochemical properties of starch, because they reduce water binding by starch granules and retard their swelling. An objective of the presented work was to analyze the chemical composition of wheat starch and characterize the thermodynamics of gelatinization of different wheat starches and to evaluate the stability of AMLs derived from these starches with the aid of differential scanning calorimetry (DSC). Grains of eight wheat varieties were used throughout the studies. The gelatinization behavior of the eight wheat varieties examined was similar. The lowest temperature of the onset of gelatinization (Tk = 57.07°C) was found for the Jawa variety, and the highest (Tk = 60.58°C) for the Torka variety. Enthalpy of gelatinization (ΔHk) of the examined wheat starch preparations ranged from 9.14 J/g (Sakwa) to 11.95 J/g (Elena). Temperature and enthalpy of AMLs dissociation depended on wheat starch variety. During the first heating the temperature of the minimum of the endotherm (Td) ranged from 98.41°C to 100.5°C. During the second heating, the minimum was at slightly higher temperatures, varying from 102.02°C to 104.08°C. Enthalpies of AML dissociation (ΔHd) varied from 1.45 J/g to 2.14 J/g during the first heating. During the second heating the enthalpy values were slightly lower (1.26 J/g to 1.68 J/g). Enthalpies of AML reassociation ranged from 1.29 J/g to 1.72 J/g during the first cooling, and from 1.17 J/g to 1.63 J/g during the second cooling. A correlation was found between the amount of lipids and AML content.  相似文献   

10.
In this paper, we studied the effects of trehalose on the rheological and thermal properties of tapioca starch (TS). Temperature sweep experiments showed that trehalose shifted the peak gelatinization temperature (TG′max) to higher value. Rheological features calculated from the power law model indicated that trehalose addition increased the consistency and decreased the thixotropy of TS gels. DSC experiments showed that trehalose retarded the gelatinization of TS–trehalose blends reflected in the increase of gelatinization temperature. The gelatinization kinetics was evaluated by a non‐isothermal technique based on the DSC endotherms. Kinetics analysis showed the addition of trehalose increased the activation energy and decreased the rate constants of TS–trehalose blends, indicating the same sugar effect as the rheological and DSC experiments. The work demonstrated that kinetics analysis could provide new evidences for the influence of trehalose on starch gelatinization.  相似文献   

11.
A new method of physical modification of starch in the presence of high concentrated salt solution is presented, called “Osmotic Pressure Treatment” (OPT). OPT was introduced in order to produce the same physically modified products as obtained by conventional heat‐moisture treatment (HMT) of starch. Potato starch was selected for the comparative study of the two methods. For the OPT method, potato starch was suspended in a saturated solution of sodium sulfate and heated in an autoclave at 105°C and 120°C ,which corresponded to the calculated osmotic pressures of 328 and 341 atm (332 and 345 bar, respectively) (assuming sodium sulfate dissociates completely) for 15, 30 and 60 min, respectively. For the HMT method, starch with 20% moisture content was placed in a Duran bottle, then the same heat treatment method in the autoclave was applied. Light and scanning electron microscopy (SEM) showed that OPT of starch changed the shape of the starch granules to a folded structure, while the starches remained unchanged after HMT. The RVA viscogram for the OPT starch exhibited a decrease in the peak viscosity without a breakdown and an increase of the pasting temperature when increasing the temperature and time, which was in an agreement with the viscosity patterns for the HMT starches. X‐ray diffraction patterns were altered from B to A+B for the HMT and from B to A type for the OPT starch when treated at 120°C. After OPT, the gelatinization temperatures (To, Tp, and Tc) of the starch increased significantly with increasing temperature and time, whereas only the Tc of starch increases after HMT. The biphasic broadening of the peaks (high TcTo) can be explained by an inhomogeneous heat transfer during HMT. Narrow peaks in the DSC curve can be an indication for a better homogeneity of the OPT samples. However, both methods provide a similar decrease in the gelatinization enthalpy (ΔH). The amylose‐amylopectin ratio calculated from the HPSEC patterns was strongly increased for HMT starches at 105°C for 60 min and 120°C for 30 min and decreased after treatment at 120°C for 60 min. For OPT starches the ratio was strongly increased at 120°C for 15 min and decreased after prolong heating. The OPT provides a uniform heat distribution in the starch suspension. This allows the modified starch to be produced on a larger scale.  相似文献   

12.
The influence of damaged starch (DS) on gelatinization and retrogradation wheat starch properties was investigated. Samples with different content of DS were obtained and evaluated. DSC was used for monitoring the changes in thermal behavior of the starch samples at different water amounts. Starch thermal transitions were affected simultaneously by DS content and water content. The Flory–Huggins parameters were modified by DS. A significant raise in the T°m, and x1–2, and a decrease in ΔHu was recorded. The AP retrogradation kinetics was evaluated by Avrami model. A significant increase of the AP crystallization rate was observed when DS increased. The results demonstrated the importance of the presence of physically damaged granules on wheat starch properties.  相似文献   

13.
ABSTRACT: This review article highlights the thermal behaviors of selected starches that were studied using differential scanning calorimetery (DSC) with data shown in various research publications. The starches of sago, potato, sweet potato, cassava, yam, and corn are included in this overview. Our examinations indicate that thermal properties are highly affected by the type of starch, its amylose/amylopectin content, and the presence of other food ingredients such as sugar, sodium chloride, water, milk, hydrocolloids, and meat. When the heating temperatures of the starches were increased, the DSC measurements also showed an increase in the temperatures of the gelatinization (onset [To], peak [Tp], and conclusion [Tc]). This may be attributed to the differences in the degree of crystallinity of the starch, which provides structural stability and makes the granule more resistant to gelatinization.  相似文献   

14.
Starch granules were isolated from mature kernels of single-, double-, and triple-mutants of endosperm starch modifying genes [waxy(wx), dull(du), amylose extender(ae), sugary-2(su2)] and their normal counterpart in the inbred Oh43 maize (Zea mays L.) background. Gelatinization characteristics of the starch granules were investigated by means of differential scanning calorimetry (DSC). The onset, peak, and conclusion temperatures of gelatinization (To, Tp, and Tc, respectively) and the heat of gelatinization (ΔH) of starch were determined from the DSC thermograms. The Tc of wx was higher than normal starch, and the ΔH of wx was larger than normal starch. The Tp and Tc values of ae starch were the highest. The To, Tp, and Tc values of su2 starch were low. The noticeable effects of each of the wx, ae, and su2 genes on To, Tp, Tc and ΔH were observed in starches of their respective mutant combinations. Apparent epistatic effects of the genes for gelatinization temperature were observed. Pronounced effect of the heating rate on gelatinization temperature of su2 mutant were lower than other mutant starches and were affected by the heating rate.  相似文献   

15.
The thermal properties of seven commercial modified cassava starches, including oxidized, acetylated, cross‐linked, and combined acetylated and cross‐linked starches were studied by differential scanning calorimetry (DSC) in the glassy and rubbery states. Increase in gel hardness in the rubbery state during storage was also monitored, as well as gelatinization behavior. The modified starches were prepared from granular starch and had a degree of substitution in the range 0–0.053. The glass transition temperatures (Tg) of the modified starches were 3–6°C significantly lower than that of the non‐modified starch. The physical aging peak temperatures were also significantly reduced by 2–3°C, compared to the non‐modified starch, while aging enthalpies increased. Starch modifications did not decrease amylopectin retrogradation significantly. During storage, the oxidized starch gel became significantly harder than the non‐modified starch gel, while the hardness of the acetylated and/or cross‐linked starch gels was significantly reduced, which confirmed that acetylation or cross‐linking can decrease hardness, even when the extent of modification is limited. Different modifications controlled different properties of the starch system, with cross‐linking and acetylation influencing the gelatinization behavior and the changes in starch gel texture during storage, respectively.  相似文献   

16.
The gelatinization characteristics of a cassava/corn starch based blend with relatively high moisture content during cooking extrusion were studied. The study was carried out by using Response Surface Methodology. The results showed that the die temperature Td (°C) was the main influencing factor for the starch gelatinization, and the feed rate of the materials Vf (g/min) was another minor one. Because of the high material moisture content during extrusion the moisture content Mc (%) influenced the gelatinization degree not so obviously. The residence time distribution of the mass during extrusion were studied as well as discussed as a influencing factor on the gelatinization results.  相似文献   

17.
The thermal, dynamic, and structural properties of wheat starch–water systems with different levels of water content (11, 35, 40, 42, 45, and 50%, wet basis) were investigated. 1H time domain nuclear magnetic resonance (TD-NMR) spectroscopy was used to interpret and quantify the water transfer and starch transformations in terms of water uptake, granule swelling, amylose leaching, and melting of starch polymers in relation to the different levels of water content. Complementary differential scanning calorimetry (DSC) experiments were performed to study the effects of water content on the degree of starch gelatinization. In particular, this twofold approach was applied to the first endotherm to study the mechanisms of gelatinization with a common heating range both in NMR and DSC. It was shown that the trend of the enthalpy changes in the first phase transition in starch–water (SW) mixtures was strongly correlated with the loss of solid content measured by NMR in the corresponding temperature range (55–70 °C). Based on the evolution of the relative amplitudes of T 2, structural transformations of starch were shown to occur in both crystalline and amorphous regions within SW samples, supporting the fact that the amorphous phase of starch also plays a significant role in the phase transition of granules during gelatinization. This dynamic and hydrothermal approach provided the first NMR-based interpretation of the first endotherm measured by DSC.  相似文献   

18.
Dissociation of amylose – lipid complexes (AMLs) upon gelatinization and enzymatic hydrolysis of wheat starch has been examined using differential scanning calorimetry (DSC). Digestion of starch by the thermostable α‐amylase THERMAMYL 120L was carried out under conditions applied for enzymatic hydrolysis of wheat starch in industry, i.e. 5 min incubation at 105°C, followed by 60–90 min hydrolysis at 95°C. For comparison reasons, samples of wheat starch slurries were incubated under the same conditions but in the absence of enzyme. The enthalpy and temperature of AMLs dissociation and the shapes of peaks in the DSC endo‐ and exotherms depended on conditions of starch processing prior to DSC measurements. Wheat starch gelatinization coupled with its digestion by α‐amylase resulted in more pronounced AML degradation as compared to gelatinization in the absence of enzyme. Different shapes of peaks in thermograms and different temperatures of AMLs dissociation and reassociation indicate that different AML polymorphs were generated in the examined samples. Their concentrations depended on conditions (temperature, time and the presence or absence of α‐amylase) of wheat starch treatment.  相似文献   

19.
The starches separated from bulbs of four different lily cultivars (Lanzhou, Pinglu, Yixing‐1, and Yixing‐2) were investigated for physicochemical, morphological, crystalline, and thermal properties. AM content of lily bulbs starches from different cultivars ranged from 19.46 to 25.17%. The swelling power of starches ranged between 14.4 and 21.3 g/g, and the solubility ranged from 8.92 and 16.6% at the temperature of 85°C. Four cultivars of lily starches paste had excellent transparency and the transmittance value of Lanzhou lily as high as 54.7%. The transmittance of the gelatinized aqueous starch suspensions, from all lily cultivars, decreased with increase in storage period. The shape of starch granules varied from triangular to cylindrical and XRD of four lily starches all showed B‐type pattern. The transition temperatures and enthalpy of gelatinization (ΔHgel) were determined using DSC. Tp varied from 62.52 to 65.25°C. Pinglu lily starch showed the highest ΔHgel and gelatinization range (TcTo) index among starches from four different lily cultivars.  相似文献   

20.
The effects of various cooking methods on the physical and structural properties cooked rice, on the in vitro hydrolysis of the contained starch and on blood glucose response in rats were investigated. At optimum cooking state, a larger filamentous network was formed and most of the starch granules were fragmented, furthermore the samples heated by microwave and electric cooker showed a more compact structure compared to those treated in an autoclave or stone pot. The highest degree of gelatinization (DG) was observed in the sample treated in an autoclave (75.2%), followed by stone pot (71.1%), electric cooker (66.9%) and microwave oven (64.6%). The highest firmness (3.49 N) was observed in cooked rice heated by microwaves and no significant differences (p > 0.05) were found between the other samples. All cooked rice samples showed increased pasting temperatures and decreased peak viscosity compared to those of raw rice flour. The starch hydrolysis rates and their kinetic constants of cooked rice samples increased with increase in DG, and relatively higher values were observed in samples treated in the autoclave and stone pot. There was a significant difference in the blood glucose content depending on cooking methods, and the highest glucose level was observed in the sample heated by autoclaving.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号