首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
α-淀粉酶水解玉米淀粉的研究   总被引:28,自引:2,他引:28  
郝晓敏  王遂  崔凌飞 《食品科学》2006,27(2):141-143
研究了中温和耐高温α-淀粉酶水解玉米淀粉制取糊精,确定了它们水解适宜的工艺条件。中温α-淀粉酶晟佳的工艺条件为温度84℃、时间20min、酶用量16U/g;而寸高温α-淀粉酶最佳的工艺条件为温度95℃、时间40min、酶用量15U/g。  相似文献   

2.
目的:深度开发青稞低血糖生成指数(GI)食品以及SDS系列产品。方法:以青稞粉为原料,采用响应面试验确定最优酶解条件,并通过α-葡萄糖苷酶和α-淀粉酶的抑制作用来评价其体外降糖活性。结果:当β-淀粉酶添加量为60 U/g,酶解时间为3.5 h,酶解温度为51℃,料液比(m青稞粉∶Vβ-淀粉酶液)为1∶12 (g/mL)时,酶改性青稞粉中慢消化淀粉含量最高为16.55%。酶解后,青稞粉对α-葡萄糖苷酶和α-淀粉酶的最高抑制率分别为71.39%,48.32%。结论:最优酶解条件下,酶改性青稞粉中慢消化淀粉含量明显提高。  相似文献   

3.
生物技术应用于婴幼儿谷基配方米粉的工艺研究   总被引:2,自引:0,他引:2  
为了进一步提高婴幼儿米粉的消化吸收性能,将生物酶解技术与传统滚筒米粉生产工艺集成.用α-淀粉酶BA75水解大米淀粉,确定主要工艺参数;探讨酶解工艺对产品糊化度和消化吸收性能的影响.结果表明:在米浆pH值自然,α-淀粉酶BA75最佳反应温度60℃,酶添加量O.02%~0.07%(按米粉质量计)条件下水解30min,DE值在5%~10%之间.为保证米浆管路传输性能,酶的钝化条件为70℃、15 min.生物酶法工艺制备的米粉较传统滚筒干燥工艺制备的米粉在糊化度和消化吸收性能方面有一定程度的提高.其中,生物酶法工艺米粉糊化度迭100%,淀粉消化指数SDI提高了33%.  相似文献   

4.
以黄小米和红小豆为主要原料,利用α-淀粉酶对红豆小米复合米粉进行水解,以还原糖含量(DE值)和感官品质为指标,以α-淀粉酶的添加量、底物浓度、酶解温度、酶解时间为单因素变量,分别进行单因素试验和正交试验,确定最佳酶解工艺。结果表明,α-淀粉酶添加量1.2%,底物浓度4%,酶解温度60℃,酶解时间105 min时,红豆小米复合米粉的米浆DE值达到最高,为60.43%,感官评分为89.51分。  相似文献   

5.
本文采用α-淀粉酶对麦麸淀粉进行水解,以还原糖含量为评价指标,以酶添加量、料液比、酶解温度和酶解时间为主要影响因素,在单因素试验的基础上进行正交优化试验,确定淀粉酶水解淀粉的最佳工艺参数为:酶添加量0.6%,料液比1∶12,酶解温度55℃,酶解时间60min。此时淀粉的水解效果最好。  相似文献   

6.
为优化双酶水解技术生产婴幼儿米粉工艺,以α-淀粉酶添加量、β-淀粉酶添加量、调浆水温度为主要影响因素,结合实际生产中的其他水解条件,在单因素试验基础上,运用Box-Behnken试验设计原理,探讨α-淀粉酶添加量、β-淀粉酶添加量、调浆水温度的最佳组合。结果表明:α-淀粉酶添加量0.04‰(相当于0.15 U/g)、β-淀粉酶添加量0.26%(相当于1 820 U/g)、调浆水温度70.2 ℃时生产米粉的淀粉消化指数高达39.26%,与市售品牌米粉相比,淀粉消化指数提高10%以上。  相似文献   

7.
目的:提高和增加青稞的附加值。方法:以黑青稞粉为原料,利用α-淀粉酶制备快消化淀粉含量低的青稞粉,以快消化淀粉含量为指标,通过响应面试验优化降低青稞快消化淀粉含量的最优工艺条件,并通过α-葡萄糖苷酶和α-淀粉酶抑制率评价其体外降糖活性。结果:α-淀粉酶制备快消化淀粉含量低的青稞粉的最佳工艺条件为α-淀粉酶添加量150 U/g、料液比1∶10 (g/mL)、酶解时间2 h、酶解温度65℃,此时黑青稞中快消化淀粉含量为11.6%,慢消化淀粉含量为13.0%,抗性淀粉含量为75.4%。酶解后,青稞粉对α-葡萄糖苷酶和α-淀粉酶的最高抑制率分别为75.86%,75.54%。结论:试验方法可大幅度降低青稞中快消化淀粉含量。  相似文献   

8.
对添加大米粉的冰淇淋的加工工艺及配方进行了研究,通过单因素及正交实验确定了较佳工艺条件及配方,实验结果表明,酶解大米粉的较佳工艺条件为:大米粉与水的比例1:5、酶的添加量0.3%、转化温度80℃、转化时间50min;大米粉在冰淇淋中适宜的添加量为5%。   相似文献   

9.
本文以花生粕为原料,通过碱溶酸沉法提取花生蛋白,利用凯式定氮法测得其含量87.7%.继续采用超声波辅助酶法制取花生多肽,以多肽得率和α-淀粉酶抑制率为指标,考察了酶的种类、超声功率、超声时间、底物浓度、酶添加量和酶解时间等因素对α-淀粉酶抑制肽的影响,确定最优蛋白酶为风味蛋白酶,在单因素的基础上设计响应面试验对酶解条件...  相似文献   

10.
从碎米研制高蛋白米粉和麦芽糊精   总被引:1,自引:0,他引:1  
本文研究以碎米为原料,采用酶水解生产高蛋白米粉和麦芽糊精的工艺条件,同时分析高蛋白米粉的营养成分,该工艺为碎米的综合利用开辟有效途径。  相似文献   

11.
籼米多孔淀粉的研制   总被引:1,自引:0,他引:1  
试验以籼米淀粉为原料,通过α-淀粉酶水解籼米淀粉制备籼米多孔淀粉,探讨并获得了酶水解法制备籼米多孔淀粉的较优工艺:酶解反应温度为35℃,酶解反应时间为12 h,加酶量为酶解40%淀粉量,酶解体系pH值为4.0。并利用砂芯漏斗测定淀粉对液体的吸附能力,观察到大米多孔淀粉对液体的吸附能力大大强于大米原淀粉。  相似文献   

12.
以玉米淀粉为原料,用α-淀粉酶对合成的辛烯基琥珀酸酐淀粉水解,研究酶法制备辛烯基琥珀酸酐水解淀粉的工艺条件,并通过响应面分析实验对工艺进行优化。确定合成的最佳工艺参数为:酶用量115U/g,水解温度95℃,水解时间49min,所得产品辛烯基琥珀酸酐水解淀粉的DE值为8.01。通过响应面方差分析可以得出,三个因素对辛烯基琥珀酸酐水解淀粉的DE值的影响显著,且加酶量与水解温度、水解温度与水解时间之间的交互影响作用也显著。  相似文献   

13.
大米淀粉的制备   总被引:1,自引:0,他引:1  
以大米为原料,采用酶法制备大米淀粉。酶法采用中性蛋白酶,以酶解温度45℃,酶解时间18h,酶用量0.5%为最佳条件,所得淀粉中蛋白质含量为0.435%,淀粉提取率为87.75%。  相似文献   

14.
大米淀粉的制备   总被引:1,自引:0,他引:1  
以大米为原料,采用酶法制备大米淀粉.酶法采用中性蛋白酶,以酶解温度45℃,酶解时间18h,酶用量0.5%为最佳条件,所得淀粉中蛋白质含量为0.435%,淀粉提取率为87.75%.  相似文献   

15.
双酶法水解米糠淀粉的工艺研究   总被引:1,自引:0,他引:1  
为了提取米糠淀粉获得葡萄糖作为纳豆芽孢杆菌液态发酵的碳源,采用α-淀粉酶和糖化酶联合水解米糠中的淀粉,在单因素试验的基础上,运用正交试验设计方法对米糠中的淀粉水解工艺进行了研究和优化.结果表明,米糠中淀粉的最佳液化工艺条件为α-淀粉酶添加量16 u/g,温度60℃,CaCl2添加量0.2%,DE值为24.31%;最佳糖化工艺条件为糖化酶添加量200 u/g,温度60℃,pH 4.0,糖化时间6h,最大DE值为98.96%.该工艺使米糠中淀粉的提取率达到了89%,并基本都水解为了还原糖,可作为纳豆芽孢杆菌液态发酵的优质碳源.  相似文献   

16.
酶水解米渣蛋白制备大米肽研究   总被引:5,自引:0,他引:5  
该研究利用米渣蛋白制备大米肽的适宜酶水解条件,结果表明:在pH 8.5、温度55℃、酶用量2.0%条件下水解3h,水解液中5%TCA可溶性肽含量可达37%以上。  相似文献   

17.
双酶法水解米渣蛋白工艺研究   总被引:4,自引:1,他引:4  
运用碱性蛋白酶和中性蛋白酶双酶水解米渣蛋白质,以大米蛋白水解度为考核指标,通过研究确定双酶法水解米渣蛋白最佳工艺及工艺参数.米渣原料经90℃高温水洗两次后,首先按碱性蛋白酶最佳酶解条件:温度为55℃、pH值为10.0、酶量为6,000μ/g、时间为4h,进行第一次酶解,达到酶解时间后,高温灭酶10min,冷却后调pH为...  相似文献   

18.
《食品工业科技》2013,(01):92-96
研究了挤压处理对碎米结构及特性的影响,通过X-射线衍射分析法、扫描电镜法分别对淀粉颗粒的晶体结构及外表特征进行观察,结果发现挤压处理后的碎米淀粉颗粒的结晶度明显减少;碎米淀粉颗粒外表面呈现不规则形状,并有聚集的现象出现。并对碎米淀粉的溶解性、膨胀力、糊化特性及α-淀粉酶敏感度的测定。挤压处理后碎米淀粉的溶解度增加,膨胀力减小;终值粘度、回生值、衰减值、糊化温度和峰值时间分别从2343、1209、446cP、78.8℃、5.82min降低到114、49、94cP、55.0℃、1.85min;对α-淀粉酶的敏感性有显著的提高。   相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号