首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transport properties and device characteristics of pseudomorphic In0.4Al0.6As/InP modulation-doped heterostructures are investigated. The existence of a two-dimensional electron gas at the heterojunction was confirmed by Shubnikov-de Haas measurements. A high electron mobility transistor (HEMT) having a gate length of 1.5 μm showed extrinsic transconductances and drain current densities as high as 160 mS/mm and 300 mA/mm, respectively. The HEMT also showed a very small output conductance of less than 2 mS/mm and high gate-drain breakdown voltage of larger than 15 V. These results show the great potential of this HEMT for high-voltage gain and high-power microwave applications  相似文献   

2.
An In0.52Al0.48As/In0.6Ga0.4 As metamorphic high-electron mobility transistor (MHEMT) with 0.15-mum Gamma-shaped gate using deep ultraviolet lithography and tilt dry-etching technique is demonstrated. The developed submicrometer gate technology is simple and of low cost as compared to the conventional E-beam lithography or other hybrid techniques. The gate length is controllable by adjusting the tilt angle during the dry-etching process. The fabricated 0.15-mum In0.52Al0.48As/In0.6Ga0.4As MHEMT using this novel technique shows a saturated drain-source current of 680 mA/mm and a transconductance of 728 mS/mm. The fT and fmax of the MHEMT are 130 and 180 GHz, respectively. The developed technique is a promising low-cost alternative to the conventional submicrometer E-beam gate technology used for the fabrication for GaAs MHEMTs and monolithic microwave integrated circuits  相似文献   

3.
An 80-nm gate length metamorphic high electron mobility transistor (mHEMT) on a GaAs substrate with high indium composite compound-channels In0.7Ga0.3As/In0.6Ga0.4As and an optimized grade buffer scheme is presented. High 2-DEG Hall mobility values of 10200 cm2/(V· s) and a sheet density of 3.5 × 1012 cm-2 at 300 K have been achieved. The device's T-shaped gate was made by utilizing a simple three layers electron beam resist, instead of employing a passivation layer for the T-share gate, which is beneficial to decreasing parasitic capacitance and parasitic resistance of the gate and simplifying the device manufacturing process. The ohmic contact resistance Rc is 0.2 Ω ·mm when using the same metal system with the gate (Pt/Ti/Pt/Au), which reduces the manufacturing cycle of the device. The mHEMT device demonstrates excellent DC and RF characteristics. The peak extrinsic transconductance of 1.1 S/mm and the maximum drain current density of 0.86 A/mm are obtained. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) are 246 and 301 GHz, respectively.  相似文献   

4.
Temperature-dependent current-voltage measurement was employed to study the band offsets of the In0.30Ga0.70As/In 0.29Al0.71As heterojunction. The conduction band discontinuity was determined to be 0.71±0.05 eV which corresponds to a conduction band offset to bandgap difference ratio ~0.66. The comparison between experimental and theoretical results is presented  相似文献   

5.
InP-based high electron mobility transistors (HEMTs) were fabricated by depositing Pt-based multilayer metallization on top of a 6-nm-thick InP etch stop layer and then applying a post-annealing process. The performances of the fabricated 55-nm-gate HEMTs before and after the post-annealing were characterized and were compared to investigate the effect of the penetration of Pt through the very thin InP etch stop layer. After annealing at 250 °C for 5 min, the extrinsic transconductance (Gm) was increased from 1.05 to 1.17 S/mm and Schottky barrier height was increased from 0.63 to 0.66 eV. The unity current gain cutoff frequency (fT) was increased from 351 to 408 GHz, and the maximum oscillation frequency (fmax) was increased from 225 to 260 GHz. These performance improvements can be attributed to penetration of the Pt through the 6-nm thick InP layer, and making contact on the InAlAs layer. The STEM image of the annealed device clearly shows that the Pt atoms contacted the InAlAs layer after penetrating through the InP layer.  相似文献   

6.
We report for the first time the successful epitaxial growth and processing of high-performance metamorphic high electron mobility transistors (HEMTs) on Ge substrates, with a transconductance of 700 mS/mm and a saturation channel current of 650 mA/mm. To reduce parasitic capacitances due to the conductive substrate, a dry etch method based on CF4 and O2 reactive ion etching (RIE) is developed for selective substrate removal. Devices with 0.2 μm gate length display an increase of the extrinsic cut-off frequency fT from 45 GHz before, to 75 GHz after substrate removal, whereas the maximum oscillation frequency fmax increases from 68 GHz to 95 GHz. Based on this excellent rf performance level, in combination with the highly selective thinning process, we think that Ge as a sacrificial substrate is a promising candidate for the integration of thinned individual HEMTs with passive circuitry on low-cost substrates. This could result in low-cost advanced hybrid systems for mass-market millimeter wave applications  相似文献   

7.
A double-doped metamorphic In0.35Al0.65As/In 0.35Ga0.65As power heterojunction FET (HJFET) on GaAs substrate is demonstrated. The HJFET exhibits good dc characteristics, with gate forward turn on voltage of 1.0 V, breakdown voltage of 20 V, and maximum drain current of 490 mA/mm. Under RF operation at a frequency of 950 MHz, a power added efficiency of 63% with associated output power of 31.7 dBm is obtained at a gate width of 12.8 mm. This large gate width and state-of-the-art power performance in metamorphic HJFETS were enabled by a selective etching, sputtered WSi gate process and low surface roughness due to an Al0.60Ga0.40As0.69Sb0.31 strain relief buffer  相似文献   

8.
New In0.52Al0.48As/In0.53Ga0.47 As transferred-substrate high electron mobility transistors (TS-HEMTs) have been successfully fabricated on 2-in Silicon substrate with 0.12 μm T-shaped gate length. These new TS-HEMTs exhibit typical drain currents of 450 mA/mm and extrinsic transconductance up to 770 mS/mm. An extrinsic current gain cutoff frequency fT of 185 GHz is obtained. That result is the first reported for In0.52Al0.48As/In0.53Ga0.47 As TS-HEMTs on Silicon substrate  相似文献   

9.
The authors report the first demonstration of In0.52Al 0.48As/In0.53Ga0.47As metal-semiconductor-metal (MSM) photodetectors and high-electron-mobility transistors (HEMTs) grown on GaAs substrates by organometallic chemical vapor deposition. Both photodetectors and transistors showed no degradation in performance compared to devices simultaneously grown on InP substrates. The photodetectors exhibited a responsivity of 0.45 A/W and leakage current of 10 to 50 nA. The HEMTs with a gate length of 1.0 μm showed a transconductance as high as 250 mS/mm, and fT and fmax of 25 and 70 GHz, respectively  相似文献   

10.
Monolithic integration of enhancement (E)- and depletion (D)-mode metamorphic In0.52Al0.48As/In0.53Ga0.47 As/GaAs HEMTs with 0.35 μm gate-length is presented for the first time. Epilayers are grown on 3-inch SI GaAs substrates using molecular beam epitaxy. A mobility of 9550 cm2/V-s and a sheet density of 1.12×1012 -2 are achieved at room temperature. Buried Pt-gate was employed for E-mode devices to achieve a positive shift in the threshold voltage. Excellent characteristics are achieved with threshold voltage, maximum drain current, and extrinsic transconductance of 100 mV, 370 mA/mm and 660 mS/mm, respectively for E-mode devices, and -550 mV, 390 mA/mm and 510 mS/mm, respectively for D-mode devices. The unity current gain cutoff frequencies of 75 GHz for E-mode and 80 GHz for D-mode are reported  相似文献   

11.
V-band low-noise planar-doped pseudomorphic (PM) InGaAs high electron mobility transistors (HEMTs) were fabricated with an indium mole fraction of 28% in the InGaAs channel. A device with 0.15-μm T-gate achieved a minimum noise figure of 1.5 dB with an associated gain of 6.1 dB at 61.5 GHz  相似文献   

12.
建立了SACM型In0.53Ga0.47As/In0.52Al0.48As雪崩光电二极管(APD)的分析模型,通过数值研究和理论分析设计出高性能的In0.53Ga0.47As/In0.52Al0.48As APD。器件设计中,一方面添加了In0.52Al0.48As势垒层来阻挡接触层的少数载流子的扩散,进而减小暗电流的产生;另一方面,雪崩倍增区采用双层掺杂结构设计,优化了器件倍增区的电场梯度分布。最后,利用ATLAS软件较系统地研究并分析了雪崩倍增层、电荷层以及吸收层的掺杂水平和厚度对器件电场分布、击穿电压、IV特性和直流增益的影响。优化后APD的单位增益可以达到0.9 A/W,在工作电压(0.9 Vb)下增益为23.4,工作暗电流也仅是纳安级别(@0.9 Vb)。由于In0.52Al0.48As材料的电子与空穴的碰撞离化率比InP材料的差异更大,因此器件的噪声因子也较低。  相似文献   

13.
The authors report the successful demonstration of a 1.0-μm gate InAlAs/InGaAs heterojunction FET (HFET) on top of thick InGaAs layers using lattice-matched molecular beam epitaxy (MBE). This scheme is compatible with metal-semiconductor-metal (MSM) photodetector fabrication. The authors measured the performance of InAlAs/InGaAs HFETs from 0 to 40 GHz. Device performance is characterized by peak extrinsic transconductances of 390 mS/mm and as-measured cutoff frequencies up to 30 GHz for a nominal 1.0-μm-gate-length HFET. HFET device measurements are compared for samples growth with and without the thick underlying InGaAs optical-detector absorbing layer  相似文献   

14.
利用新型的PMMA/PMGI/ZEP520/PMGI四层胶T形栅电子束光刻技术制备出120nm栅长InP基雁配In0.7Ga0.3As/In0.52Al0.48As 高电子迁移率晶体管。制作出的InP基HEMT器件获得了良好的直流和高频性能,跨导、饱和漏电流密度、阈值电压、电流增益截止频率和最大单向功率增益频率分别达到520 mS/mm, 446 mA/mm, -1.0 V, 141 GHz 及 120 GHz。文中的材料结构和所有器件制备均为本研究小组自主研究开发。  相似文献   

15.
J. Ajayan  D. Nirmal 《半导体学报》2017,38(4):044001-6
In this work, the performance of Lg=22 nm In0.75Ga0.25As channel-based high electron mobility transistor (HEMT) on InP substrate is compared with metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. The devices features heavily doped In0.6Ga0.4As source/drain (S/D) regions, Si double δ-doping planar sheets on either side of the In0.75Ga0.25As channel layer to enhance the transconductance, and buried Pt metal gate technology for reducing short channel effects. The TCAD simulation results show that the InP HEMT performance is superior to GaAs MHEMT in terms of fT, fmax and transconductance (gm_max). The 22 nm InP HEMT shows an fT of 733 GHz and an fmax of 1340 GHz where as in GaAs MHEMT it is 644 GHz and 924 GHz, respectively. InGaAs channel-based HEMTs on InP/GaAs substrates are suitable for future sub-millimeter and millimeter wave applications.  相似文献   

16.
Metamorphic In0.53Ga0.47As p-i-n photodiodes on GaAs substrate exhibiting the lowest dark current ever reported were fabricated and characterized. Their dark current, DC and RF performances were measured and compared for devices of different sizes. Typical dark current for 15-μm-diameter devices was 600 pA under 5-V reverse bias, corresponding to a dark current density of 3.40×10-4 A/cm2. Typical responsivity measured with 1.55-μm optical radiation was 0.55 A/W corresponding to an external quantum efficiency of 44%. The electrical 3 dB bandwidths of the photodiodes with diameters smaller than 20 μm were over 20 GHz  相似文献   

17.
Yang  C.H. Shih  H.D. 《Electronics letters》1988,24(25):1554-1555
Negative differential resistance has been observed in the current/voltage characteristics of a double barrier resonant tunnelling structure with Al0.2Ga0.8As emitters, Al0.4 Ga0.6As barriers and GaAs quantum well for the first time. The NDR becomes clear at low temperatures below 77 K, and the current/voltage characteristic is asymmetric. Results demonstrate that high-quality abrupt GaAs-AlxGa1-xAs-AlyGa1-yAs heterojunctions can be of use in resonant tunnelling structures  相似文献   

18.
P-n-p In0.52Al0.48As/In0.53Ga0.47 As double-heterojunction bipolar transistors with a p+-InAs emitter cap layer grown by molecular-beam epitaxy have been realized and tested. A five-period 15-Å-thick In0.53Ga0.47As/InAs superlattice was incorporated between the In0.53Ga0.47As and InAs cap layer to smooth out the valence-band discontinuity. Specific contact resistance of 1×10-5 and 2×10-6 Ω-cm2 were measured for nonalloyed emitter and base contacts, respectively. A maximum common emitter current gain of 70 has been measured for a 1500-Å-thick base transistor at a collector current density of 1.2×103 A/cm2. Typical current gains of devices with 50×50-μm2 emitter areas were around 50 with ideality factors of 1.4  相似文献   

19.
The fabrication, structure, and properties of unstrained modulation-doped, 1-μm-long and 10-μm-wide gate, field effect transistors made of In0.3Ga0.7As/In0.29As0.71As heterojunctions grown on GaAs substrates using compositionally step-graded buffer layers are described. These devices have a transconductance of 335 mS/mm, fmax of 56 GHz, and a gate breakdown voltage of 23.5 V  相似文献   

20.
Compositionally graded InxGa1−xP (x=0.48→x=1) metamorphic layers have been grown on GaAs substrate by solid source molecular beam epitaxy using a valved phosphorus cracker cell. Three series of samples were grown to optimize the growth temperature, V/III ratio and grading rate of the buffer layer. X-ray diffraction (XRD) and photoluminescence (PL) were used to characterize the samples. The following results have been obtained: (1) XRD measurement shows that all the samples are nearly fully strain relaxed and the strain relaxation ratio is about 96%; (2) the full-width at half-maximum (FWHM) of the XRD peak shows that the sample grown at 480°C offers better material quality; (3) the grading rate does not influence the FWHM of XRD and PL results; (4) adjustment of the V/III ratio from 10 to 20 improves the FWHM of XRD peak, and the linewidth of PL peak is close to the data obtained for the lattice-matched sample on InP substrate. The optimization of growth conditions will benefit the metamorphic HEMTs grown on GaAs using graded InGaP as buffer layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号