首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

2.
《Fuel》2005,84(7-8):833-840
Pulverized coal combustion in air and the mixtures of O2/CO2 has been experimentally investigated in a 20 kW down-fired combustor (190 mm id×3 m). Detailed comparisons of gas temperature profiles, gas composition profiles, char burnouts, conversions of coal–N to NOx and coal–S to SO2 and CO emissions have been made between coal combustion in air and coal combustion in various O2/CO2 mixtures. The effectiveness of air/oxidant staging on reducing NOx emissions has also been investigated for coal combustion in air and O2/CO2 mixtures. The results show that simply replacing the N2 in the combustion air with CO2 will result in a significant decrease of combustion gas temperatures. However, coal combustion in 30% O2/70% CO2 can produce matching gas temperature profiles to those of coal combustion in air while having a lower coal–N to NOx conversion, a better char burnout and a lower CO emission. The results also confirm that air/oxidant staging is very effective in reducing NOx emissions for coal combustion in both air and a 30% O2/70% CO2 mixture. SO2 emissions are proved to be almost independent of the combustion media investigated.  相似文献   

3.
Hao Liu  Ramlan Zailani 《Fuel》2005,84(16):2109-2115
This paper presents experimental results of a 20 kW vertical combustor equipped with a single pf-burner on pulverised coal combustion in air and O2/CO2 mixtures with NOx recycle. Experimental results on combustion performance and NOx emissions of seven international bituminous coals in air and in O2/CO2 mixtures confirm the previous findings of the authors that the O2 concentration in the O2/CO2 mixture has to be 30% or higher to produce matching temperature profiles to those of coal-air combustion while coal combustion in 30% O2/70% CO2 leads to better coal burnout and less NOx emissions than coal combustion in air. Experimental results with NOx recycle reveal that the reduction of the recycled NO depends on the combustion media, combustion mode (staging or non-staging) and recycling location. Generally, more NO is reduced with coal combustion in 30% O2/70% CO2 than with coal combustion in air. Up to 88 and 92% reductions of the recycled NO can be achieved with coal combustion in air and in 30% O2/70% CO2 respectively. More NO is reduced with oxidant staging than without oxidant staging when NO is recycled through the burner. Much more NO is reduced when NO recycled through the burner (from 65 to 92%) than when NO is recycled through the staging tertiary oxidant ports (from 33 to 54%). The concentration of the recycled NO has little influence on the reduction efficiency of the recycled NO with both combustion media—air and 30% O2/70% CO2.  相似文献   

4.
The effects of particle size, fuel blending ratio, moisture content and excess air ratio on combustion efficiency and air emissions (CO2, CO, SO2 and NOx) from the co‐combustion of white pine or peat with a Canadian lignite coal, were examined in a pilot‐scale bubbling fluidised bed combustor. Pelletising was important for the efficient combustion of wood due to its high volatile content. Co‐firing lignite and pine pellets gave a proportional reduction in SO2 and NOx emissions with blending ratio, while co‐firing of peat and lignite resulted in increased SO2 emissions, but decreased NOx emissions. Moisture promotes combustion but with increased CO emissions, and results in increased NOx emissions, and decreased SO2 emissions. High excess air decreased CO, but moderately increased SO2 and NOx emissions. © 2011 Canadian Society for Chemical Engineering  相似文献   

5.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

6.
The residual gas and remained raw gas in dual gas resources polygeneration system are quite complex in components (mainly CH4, CO, and H2), and these results to the distinguished differences in combustion reaction. Experimental investigations on basic combustion characteristics of syngas referred above are conducted on a laboratory-scale combustor with flame temperature and flue gas composition measured and analyzed. Primary air coefficient (PA), total air coefficient (TA), and components of the syngas (CS) are selected as key factors, and it is found that PA dominates mostly the ignition of syngas and NO x formation, while TA affects the flue gas temperature after high temperature region and NO x formation trend to be positive as H2/CO components increase. The results provide references for industrial utilization.  相似文献   

7.
NOx and SOx emissions of air-staged combustion were investigated in a 1 MW tangentially-fired furnace combusting a high sulfur self-retention coal. Two variables including the air stoichiometric ratio of primary combustion zone and the relative location of over-fire air (OFA) injection ports were studied. These results suggest that NOx reduction efficiency monotonically increases with increasing the relative location of OFA injection ports, and the lowest NOx emissions are achieved when the air stoichiometric ratio of primary combustion zone is 0.85. In the meantime, SOx emissions can be effectively reduced when the air stoichiometric ratio of primary combustion zone is 0.85 or 0.95, and SOx emissions monotonically decrease with increasing the relative location of OFA injection ports.  相似文献   

8.
Hannes Stadler 《Fuel》2011,90(4):1604-4344
This work presents the results of an experimental investigation on NOx emissions from coal combustion in a pilot scale test facility. Three oxidiser atmospheres have been compared, namely air, CO2/O2, and O2 enriched recirculated flue gas. NOx emissions from two different combustion modes have been studied, swirl flame and flameless combustion. The influence of the burner oxygen ratio and the oxidiser O2 concentration on NOx formation and reduction have been analysed. With increasing burner oxygen ratio, an increase of NOx emissions has been obtained for air and CO2/O2 in both, swirl flame and flameless combustion. In case of the swirl flame, flue gas recirculation leads to a reduction of NOx emissions up to 50%, whereas in case of flameless combustion this reduction is around 40% compared to CO2/O2. No significant impact of the oxidiser O2 concentration in the CO2/O2 mixture on NOx emissions is observed in the range between 18 and 27 vol.% in swirl flames. An analysis of NOx formation and reduction mechanisms showed, that the observed reduction of NOx emissions by flue gas recirculation cannot be attributed to the reduction of recirculated NOx alone, but also to a reduced conversion of fuel-N to NO.  相似文献   

9.
W. Nimmo  S.S. Daood  B.M. Gibbs 《Fuel》2010,89(10):2945-2861
Oxygen enrichment of the combustion air in pulverised coal combustion for power plant is seen as a possible retrofit measure to improve CO2 scrubbing and capture. This technique produces a reduced volume of flue gas with higher CO2 concentration than normal air combustion that will contributes to the enhancement of amine scrubbing plant efficiencies. We report in this article the results of a study at the small pilot scale into the effect of these combustion modifications on the formation of NOx and associated carbon burnout changes. Experiments were performed using a Russian coal, typical of that used in some UK power stations with shea meal and Pakistani cotton stalk as biomass fuels co-fired at a fraction of 15%th. The down-fired pulverised coal combustor was operated at 20 kWth under air-staged conditions for NOx control and the secondary and over-fire air flows were both enriched by up to 79% (100% O2) for a range of splits giving a 35% overall O2 concentration for full enrichment. When the same enrichment process was applied to biomass/coal combustion different behaviour was observed with respect to NOx formation. We have shown that oxygen enrichment can achieve benefits of improved carbon burnout with a positive impact on NOx emissions over and above the primary aim of increasing CO2 concentration in the flue gas for enhanced capture efficiencies. With all other conditions of overall stoichiometry, OFA levels and O2 enrichment levels remaining the same, NOx levels at 22% OFA initially increased over the range of secondary air enrichment, particularly for shea meal/coal co-firing. At 31% OFA the trends were to lower NOx at high enrichment levels. However, co-firing with shea meal initially showed an increase in NOx emission at lower levels of enrichment (up to 40% O2) followed by overall lower NOx emissions at 100% O2 in the secondary air. The results show that NOx emissions can either increase or decrease depending on the operating conditions. The differences in behaviour are attributed, not only to the effects of enrichment on the stoichiometry of the near-burner zone, but also on the flame dynamics and intensity of combustion related to the associated reductions in gas velocity and swirl intensity by the transition from air to pure O2 in the secondary oxidant stream.  相似文献   

10.
Jyh-Cherng Chen  Jian-Sheng Huang 《Fuel》2007,86(17-18):2824-2832
For mitigating the emission of greenhouse gas CO2 from general air combustion systems, a clean combustion technology O2/RFG is in development. The O2/RFG combustion technology can significantly enhance the CO2 concentration in the flue gas; however, using almost pure oxygen or pure CO2 as feed gas is uneconomic and impractical. As a result, this study proposes a modified O2/RFG combustion technology in which the minimum pure oxygen is mixed with the recycled flue gas and air to serve as the feed gas. The effects of different feed gas compositions and ratios of recycled flue gas on the emission characteristics of CO2, CO and NOx during the plastics incineration are investigated by theoretical and experimental approaches.Theoretical calculations were carried out by a thermodynamic equilibrium program and the results indicated that the emissions of CO2 were increased with the O2 concentrations in the feed gas and the ratios of recycled flue gas increased. Experimental results did not have the same trends with theoretical calculations. The best feed gas composition of the modified O2/RFG combustion was 40% O2 + 60% N2 and the best ratio of recycled flue gas was 15%. As the O2 concentration in feed gas and the ratio of recycled flue gas increased, the total flow rates and pressures of feed gas reduced. The mixing of solid waste and feed gas was incomplete and the formation of CO2 decreased. Moreover, the emission of CO was decreased as the O2 concentration in feed gas and the ratio of recycled flue gas increased. The emission of NOx gradually increased with rising the ratio of recycled flue gas at lower O2 concentration (<40%) but decreased at higher O2 concentration (>60%).  相似文献   

11.
Cu/Al2O3 catalysts with metal loading from 0.64 to 8.8 wt.% have been prepared and characterized by different techniques: N2 adsorption at −196 °C (BET surface area), ICP (Cu loading), XRD, selective copper surface oxidation with N2O (Cu dispersion), TPR-H2 (redox properties), and XPS (copper surface species). The catalytic activity for soot oxidation has been tested both in air and NOx/O2. The activity in air depends on the amount of easily-reduced Cu(II) species, which are reduced around 275 °C under TPR-H2 conditions. The amount of the most active Cu(II) species increases with the copper loading from Cu_1% to Cu_5% and remains almost constant for higher copper loading. In the presence of NOx, the first step of the mechanism is NO oxidation to NO2, and the catalytic activity for this reaction depends on the copper loading. For catalysts with copper loading between Cu_1% and Cu_5%, the catalytic activity for soot oxidation in the presence of NOx depends on NO2 formation. For catalysts with higher copper loading this trend is not followed because of the low reactivity of model soot at the temperature of maximum NO2 production. Regardless the copper loading, all the catalysts improve the selectivity towards CO2 formation as soot oxidation product both under air and NOx/O2.  相似文献   

12.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

13.
Combustion of fuels under enhanced oxygen atmospheres has been well investigated over the past decades in various types of combustors, varying from diesel engines to coal-fired boilers. Most studies have found significantly lower NOx emissions during Oxy-coal combustion. In this paper, NOx combustion chemistry under O2/CO2 atmosphere as well as air atmosphere was studied using detailed kinetic model. A suitable reaction mechanism was chosen based on the comparison between the calculation result and the experimental data. The influence of various parameters (temperature, CO2 concentration) on NOx conversion was investigated. The chemical effects of high CO2 concentration on NO formation and destruction process was studied. On the basis of investigations through elementary chemical reactions, it can be concluded that high CO2 concentration play a pronounced role on NOx conversion process. Moreover, the dominant reaction steps contribution to production and destruction of NO as well as the most important reactions for NO reduction under different atmospheres were discussed.  相似文献   

14.
Yewen Tan 《Fuel》2002,81(8):1007-1016
This paper describes a series of experiments conducted with natural gas in air and in mixtures of oxygen and recycled flue gas, termed O2/CO2 recycle combustion. The objective is to enrich the flue gas with CO2 to facilitate its capture and sequestration. Detailed measurements of gas composition, flame temperature and heat flux profiles were taken inside CANMET's 0.3 MWth down-fired vertical combustor fitted with a proprietary pilot scale burner. Flue gas composition was continuously monitored. The effects of burner operation, including swirling of secondary stream and air staging, on flame characteristics and NOx emissions were also studied. The results of this work indicate that oxy-gas combustion techniques based on O2/CO2 combustion with flue gas recycle offer excellent potential for retrofit to conventional boilers for CO2 emission abatement. Other benefits of the technology include considerable reduction and even elimination of NOx emissions, improved plant efficiency due to lower gas volume and better operational flexibility.  相似文献   

15.
A well-designed CFBC can burn coal with high efficiency and within acceptable levels of gaseous emissions. In this theoretical study effects of operational parameters on combustion efficiency and the pollutants emitted have been estimated using a developed dynamic 2D (two-dimensional) model for CFBCs. Model simulations have been carried out to examine the effect of different operational parameters such as excess air and gas inlet pressure and coal particle size on bed temperature, the overall CO, NOx and SO2 emissions and combustion efficiency from a small-scale CFBC. It has been observed that increasing excess air ratio causes fluidized bed temperature decrease and CO emission increase. Coal particle size has more significant effect on CO emissions than the gas inlet pressure at the entrance to fluidized bed. Increasing excess air ratio leads to decreasing SO2 and NOx emissions. The gas inlet pressure at the entrance to fluidized bed has a more significant effect on NOx emission than the coal particle size. Increasing excess air causes decreasing combustion efficiency. The gas inlet pressure has more pronounced effect on combustion efficiency than the coal particle size, particularly at higher excess air ratios. The developed model is also validated in terms of combustion efficiency with experimental literature data obtained from 300 kW laboratory scale test unit. The present theoretical study also confirms that CFB combustion allows clean and efficient combustion of coal.  相似文献   

16.
In this study, the parameters governing the activity of Pd/ceria-zirconia catalysts in the selective catalytic reduction (SCR) of NOx assisted by methane are investigated using a combination of temperature-programmed spectroscopic and thermogravimetric techniques and transient SCR conditions. By DRIFTS of adsorbed CO, it is established that Pd species on Ce0.2Zr0.8O2 are mainly present in cationic form but exhibit high reducibility. As found by temperature-programmed surface reaction (TPSR) in CH4 + NO2 atmosphere, the CH4-SCR reaction is initiated at 280 °C on Pd/Ce0.2Zr0.8O2 and yields almost 100% N2 above 500 °C. DRIFTS-MS and TGA experiments performed under transient SCR conditions show that DeNOx activity is due to a surface reaction between some methane oxidation products on reduced Pd sites with ad-NxOy species presumably located on the support. The detrimental effect of O2 on DeNOx is explained by the promotion of the total combustion of methane assisted by the ceria-zirconia component at the expense of the SCR reaction above 320 °C.  相似文献   

17.
The potential of calcium magnesium acetate (CMA) as a medium for the simultaneous control of NOx and SOx emissions has been investigated using a pulverized coal combustion rig operating at 80 kW. A US and a UK coal of significantly different sulphur contents were used as primary fuel and CMA was injected in solution form into the combustion gases by horizontally opposed twin-fluid atomisers at temperatures of 1100-1200 °C. SO2 reductions typically greater than 80 and 70% were found for initial SO2 levels of 1000 and 1500 ppm, respectively, at Ca/S ratios greater than 2.5. There did not appear to be significant limitation on sulphation by pore blockage using CMA due to the open structure formed during calcination and there is clear potential for zero SO2 emissions at higher Ca/S ratios. The Ca content of the CMA in the form of CaO, via a droplet drying/particle calcination process, absorbs SO2 by sulphation processes by penetration into the open pore structure of these particles. The effect of primary zone stoichiometry (λ1=1.05, 1.15 and 1.4) on NOx reduction was investigated for a range of CMA feed rates up to a coal equivalent of 24% of the total thermal input. NOx reductions of 80, 50 and 30% were achieved at a primary zone stoichiometry of λ1=1.05, 1.15 and 1.4, respectively, for a reburn zone residence time of 0.8 s. At lower equivalent reburn fuel fractions, coal gave greater NOx reductions than CMA but similar levels were achieved above Rff=18%. The mechanism for NOx reduction involves the organic fraction of CMA which pyrolyses into hydrocarbon fragments (CHi), but to a lesser degree than coal, which may then react with NOx in a manner similar to a conventional ‘reburn’ mechanism where NOx is partly converted to N2 depending on the availability of oxygen.  相似文献   

18.
The effect of various gases (O2, hydrocarbons, CO, H2, NO x , SO2, and H2O vapor) presenting in the diesel exhaust on soot combustion using LaCoO3 as a catalytic material was investigated in this paper. A significant promotion of the combustion rate was found following a trend of 10% H2O addition > 3,000 ppm NO x  > 1% H2 or 3,000 ppm C3H6 addition, while the improvement in soot oxidation due to the introduction of 3,000 ppm CO or 3,000 ppm CH4 into the reactant gas is relatively less. The wet pretreatment of LaCoO3 with 10% steam before soot oxidation hardly affects the combustion behavior. Interestingly, 10% water vapor in the reaction feed produced a significant promoting effect on combustion. In contrast, 30 ppm SO2 treating led to an obvious deactivation likely owing to the coverage of active sites by sulfate compounds.  相似文献   

19.
This study deals with the catalytic reaction of NOx and soot on Fe2O3 to yield N2 and CO2 in excess of oxygen. Based on the three types of kinetic experiments, i.e. temperature programmed oxidation (TPO), transient examinations and gradient-free loop reactor experiments, as well as mechanistic studies presented recently a global kinetic model is established. The model includes catalytic effect of the iron oxide on soot/O2 reaction, whereas it is assumed that NOx reduction occurs on the soot without direct participation of Fe2O3. Furthermore, the model implies global kinetic expressions for the COx formation and NOx reduction. These equations include the evolution of the surface area of soot and the correlation of reactive carbon sites (Cf) with those specifically involved in NOx reduction (C*). The kinetic model is sequentially developed by accounting for the catalytic and non-catalytic soot/O2 as well as soot/NOx/O2 conversion. Kinetic parameters are taken from the literature and are also determined from a fit to experimental data. Comparison of measured and calculated data shows accurate reproduction of the experiments and the model. Finally, the kinetic model is validated by some simulations.  相似文献   

20.
《Fuel》2007,86(10-11):1430-1438
Combustion performances and emission characteristics of olive cake and coal are investigated in a bubbling fluidized bed. Flue gas concentrations of O2, CO, SO2, NOx, and total hydrocarbons (CmHn) were measured during combustion experiments. Operational parameters (excess air ratio (λ), secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. Combustion efficiencies in the range of 83.6–90.1% were obtained for olive cake with λ of 1.12–2.30. For the setup used in this study, the optimum operating conditions with respect to NOx and SO2 emissions were found as 1.2 for λ, and 50 L/min for secondary air flowrate for the combustion of olive cake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号