首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A syringe-driven chelating column (SDCC) was applied to develop an on-line preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) method for preconcentration and determination of rare earth elements (REEs) in seawater samples. The present on-line preconcentration system consists of only one pump, two valves, an SDCC, an ICP-MS, several connectors, and Teflon tubes. Optimizations of adsorption pH condition, sample loading flow rate, and integration range were carried out to achieve optimum measurement conditions for REEs in seawater sample. Six minutes was enough for a preconcentration and measurement cycle using 10 mL of seawater sample, where the detection limits for different REEs were in the range of 0.005 pg mL−1 to 0.09 pg mL−1. Analytical results of REEs in a seawater certified reference material (CRM), NASS-5, confirmed the usefulness of the present method. Furthermore, concentrations of REEs in Nikkawa Beach coastal seawater were determined and discussed with shale normalized REE distribution pattern.  相似文献   

2.
A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al. [5]). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1 M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean.  相似文献   

3.
The determination of 34 trace metals in a river water certified reference material (CRM), i.e. JSAC 0301-1, which was issued by the Japan Society for Analytical Chemistry in January 2004, was performed by ICP-MS with a high efficiency nebulizer after preconcentration with a laboratory-made chelating resin-packed minicolumn, with which trace metals were concentrated 100-fold from 50 mL of a river water sample to 0.5 mL of the final analysis solution. Trace metals in JSAC 0301-1 were observed in the concentration range from 19 microg L(-1) of Al to 0.000053 microg L(-1) of Bi. It was found that most of the concentrations of trace metals, including rare earth elements (REEs), in JSAC 0301-1 were lower than those in JAC 0031, which was also a previously issued CRM prepared with water from the same river as that of JSAC 0301-1. The low concentrations of trace metals in JSAC 0301-1 might be attributed to the fact that there was a heavy rain before collecting the original water sample to prepare the present CRM. Furthermore, the REE distribution patterns of JSAC 0301-1, JAC 0031 and the average values of river water samples in Japan were parallel to each other. These results indicate that the distributions of REEs in JSAC 0301-1 and JAC 0031 were the typical ones of river water samples in Japan.  相似文献   

4.
A new method for detection of trace metals in saline samples is described using batch preconcentration with subsequent ICP-MS analyses after direct sample insertion of the analyte loaded chelating resin. The samples were prepared using a CETAC DSX-100 system, which preconcentrates analytes and removes matrix components by a suspended particulate reagent (SPR). The SPR is consisting of polymeric beads of 0.2 μm size that selectively binds the trace metals by iminodiacetic chelating groups. The beads with bound analytes are then nebulized directly into the ICP-MS. The enrichment factors lay between 40 and 48 due to the enrichment of 120 mL suspension to 2.5–3.0 mL eluate. The method was applied and validated to the successful determination of traces of the transition metals Mn, Fe, Ni, Co, Cu, Zn, Cd, and Pb in the Open Ocean Seawater certified reference material NASS-4 and the Coastal Seawater certified reference material CASS-3. In addition to the certified constituents the rare earth elements La, Ce, Eu, Gd, Yb, and Lu were determined. Received: 15 Oktober 1999 / Revised: 1 February 2000 / Accepted: 3 February 2000  相似文献   

5.
A new method for detection of trace metals in saline samples is described using batch preconcentration with subsequent ICP-MS analyses after direct sample insertion of the analyte loaded chelating resin. The samples were prepared using a CETAC DSX-100 system, which preconcentrates analytes and removes matrix components by a suspended particulate reagent (SPR). The SPR is consisting of polymeric beads of 0.2 μm size that selectively binds the trace metals by iminodiacetic chelating groups. The beads with bound analytes are then nebulized directly into the ICP-MS. The enrichment factors lay between 40 and 48 due to the enrichment of 120 mL suspension to 2.5–3.0 mL eluate. The method was applied and validated to the successful determination of traces of the transition metals Mn, Fe, Ni, Co, Cu, Zn, Cd, and Pb in the Open Ocean Seawater certified reference material NASS-4 and the Coastal Seawater certified reference material CASS-3. In addition to the certified constituents the rare earth elements La, Ce, Eu, Gd, Yb, and Lu were determined. Received: 15 Oktober 1999 / Revised: 1 February 2000 / Accepted: 3 February 2000  相似文献   

6.
A novel flow injection ion chromatograph (FI-IC) system has been developed to fully automate pretreatment procedures for multi-elemental analysis of trace metals in seawater by inductively coupled plasma mass spectrometer (ICPMS). By combining 10-port, 2 position and 3-way valves in the FI-IC manifold, the system effectively increase sample throughput by simultaneously processing three seawater samples online for: sample loading, injection, buffering, preconcentration, matrix removal, metal elution, and sample collection. Forty-two seawater samples can be continuously processed without any manual handing. Each sample pretreatment takes about 10 min by consuming 25 mL of seawater and producing 5 mL of processed concentrated samples for multi-elemental offline analysis by ICPMS. The offline analysis improve analytical precision and significantly increase total numbers of isotopes determined by ICPMS, which include the metals Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V, and Zn. The blank value and detection limits of trace metals using the system with ICPMS analysis all range from 0.1 to 10 parts per trillion (ppt), except Al, Fe, and Zn. The accuracy of the pretreatment system was validated by measuring open-ocean and coastal reference seawater, NASS-5 and CASS-4. Using the system with ICPMS analysis, we have obtained reliable trace metal concentrations in the water columns of the South China Sea. Possessing the features of full automation, high throughput, low blank, and low reagent volume used, the system automates and simplifies rigorous and complicated pretreatment procedures for multi-elemental analysis of trace metals in seawater and effectively enhances analytical capacity for trace metal analysis in environmental and seawater samples.  相似文献   

7.
Summary A method utilizing a miniature chelated ion-exchanger column of SO3-oxine CM-cellulose has been developed to increase the sensitivity for multielement measurements by inductively coupled plasma mass spectrometry (ICP-MS). This matrix/analyte separation and preconcentration technique has been used to preconcentrate Mn, Co, Ni, Cu, Cd, and Pb from natural water samples. The multielement detection limits are in the low ppt (pg/mL) range. This FIA-ICP-MS method has been applied to the determination of various trace levels of metal ions in riverine reference material SLRS-2 and open ocean seawater reference material NASS-3.  相似文献   

8.
This paper reports a new method for preconcentration and separation of trace amounts of molybdenum in seawater samples prior to determination by inductively coupled plasma–atomic emission spectroscopy (ICP–OES). Diethylenetriaminetetraacetic acid-functionalized polysiloxane (DETAP) was synthesized by carboxymethylation of amino groups on triamine immobilized polymer, which was prepared by modification of 3-chloropropylpolysiloxane with diethylenetriamine. The resulting polysiloxane is highly selective and efficient in chelating Mo(VI) at trace levels. It can be used as a column packing material. The polysiloxane column can be reused over ten times without losing its original properties, so it is suitable for preconcentration of molybdenum species in seawater samples before determination. The parameters governing the characteristics of polysiloxane for adsorption of Mo(VI) were investigated. These include the effect of pH, amount of polysiloxane, equilibrium time, adsorption isotherm, maximum adsorption capacity, interfering ions, flow rate, capacity for reuse, and desorption. The precision of the preconcentration method, calculated as the relative standard deviation of seawater samples, was 3%. The preconcentration factor was 100. The detection limit, defined as 3 times the standard deviation of five replicate measurements of the blank sample at pH 3, was 0.17 g L–1. Measurement results for standard reference materials were in good agreement with the certified values [(CRMs), NASS-2 Seawater (Open Ocean) and CASS-2 Seawater (Coastal)].  相似文献   

9.
A simple method is described for preconcentration and separation of trace metals such as Ag, Co, Cr, Cu, Fe, Mn, Ni and Pb simultaneously from seawater using a cloud point extraction (CPE) procedure. Triton X-114 nonionic surfactant and ammonium pyrrolidine dithiocarbamate (APDC) have been used as an extraction medium and a chelating extractant, respectively. The amounts of Triton X-114 and APDC and the pH value necessary for extraction were carefully optimized. The preconcentration factor of about 200 is achieved for all the studied metals. Electrothermal atomic absorption spectrometry (ETAAS) with an Ir coated graphite tube as permanent chemical modifier has been used for determination. The limits of detection of Ag, Co, Cr, Cu, Fe, Mn, Ni and Pb were 0.003, 0.008, 0.003, 0.006, 0.015, 0.002, 0.009 and 0.01 ng ml-1, respectively. Certified reference materials such as CASS-4 and NASS-5 (seawater) and NIST-1640 (natural water) have been used for validation of the new method. The relative standard deviation (%) obtained for all the metals are in the range 0.8 - 3.6% for natural water and 11-25% for seawater materials, except for Co in NASS-5 for which it was 50%.  相似文献   

10.
This paper reports on a novel procedure for determining trace element abundances (REE and Y, Cr, Mn, Co) in seawater by inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The procedure uses a combination of pre-concentration using co-precipitation onto magnesium hydroxides and addition of thulium spike. The validity of the method was assessed onto 25 ml volumes of certified reference materials (NASS- and CASS-4) and in house seawater standard. Procedural blanks were determined by applying the same procedure to aliquots of seawater previously depleted in trace elements by successive Mg(OH)2 co-precipitations, yielding estimated contributions to the studied samples better than 1.1% for all elements, with the exception of Cr (<3.3%) and Co (up to 8%). The reproducibility of the method over the six month duration of the study was smaller than 11% RSD for all the studied elements. Results obtained for NASS-5 and CASS-4 agree well with published working values for trace elements.  相似文献   

11.
A flow analysis method with on-line sample digestion/minicolumn preconcentration/flame atomic absorption spectrometry is described for the determination of trace metals in urine. First, urine sample was on-line ultrasound-assisted digested exploiting the stopped-flow mode, and then the metals were preconcentrated passing the pre-treated sample through a minicolumn containing a chelating resin. A home-made minicolumn of commercially available imminodiacetic functional group resin, Chelite Che was used to preconcentrate trace metals (Cu, Fe, Mn and Ni) from urine. The proposed procedure allowed the determination of the metals with detection limits of 0.5, 1.1, 0.8 and 0.8 μg L−1, for Cu, Fe, Mn and Ni, respectively. The precision based on replicate analysis was less than ±10.0%, and the enrichment factor obtained was between 21.3 (Mn) and 44.1 (Ni), for sample volumes between 2.5 and 5.0 mL, and an eluent volume of 110 μL. This procedure was applied for determination of metals in urine of workers exposed to welding fumes and urine of unexposed persons (urine control).  相似文献   

12.
A novel method, combining isotope dilution with standard additions, was developed for the analysis of eight elements (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) in seawater. The method requires just 12 mL of sample and employs an off-line pre-concentration step using the commercially available chelating resin Toyopearl AF-Chelate-650M prior to determination by high resolution inductively coupled plasma magnetic sector mass spectrometry (ICP-MS). Acidified samples were spiked with a multi-element standard of six isotopes (57Fe, 62Ni, 65Cu, 68Zn, 111Cd and 207Pb) enriched over natural abundance. In addition, standard additions of a mixed Co and Mn standard were performed on sub-sets of the same sample. All samples were irradiated using a low power (119 mW cm−2; 254 nm) UV system, to destroy organic ligands, before pre-concentration and extraction from the seawater matrix. Ammonium acetate was used to raise the pH of the 12 mL sub-samples (off-line) to pH 6.4 ± 0.2 prior to loading onto the chelating resin. The extracted metals were eluted using 1.0 M Q-HNO3 and determined using ICP-MS. The method was verified through the analysis of certified reference material (NASS-5) and the SAFe inter-comparison samples (S1 and D2), the results of which are in good agreement with the certified and reported consensus values. We also present vertical profiles of the eight metals taken from the Bermuda Atlantic Time Series (BATS) station collected during the GEOTRACES inter-comparison cruise in June 2008.  相似文献   

13.
A chitosan resin derivatized with 3,4-dihydroxybenzoic acid moiety (CCTS-DHBA resin) was newly synthesized for the collection/concentration of trace uranium by using cross-linked chitosan (CCTS) as base material, and the adsorption behavior of uranium as well as 60 elements on the resin was examined by passing the sample solutions through a mini-column packed with the resin. After the elution of the collected elements on the resin with 1 M HNO3, the eluates were measured by inductively coupled plasma-mass spectrometry (ICP-MS).The CCTS-DHBA resin can adsorb several metal cations and several oxoanionic elements at appropriate pH. Among these metal ions, uranium shows an excellent adsorption behavior on this resin. Uranium as UO22+ species can be adsorbed on the resin by chelating mechanism with adsorption capacity of 330 mg g−1 resin. Through the column treatment, the complete removal of large amounts of alkali and alkaline earth matrices without any loss of adsorption efficiency over prolonged usage were achieved with this resin.The CCTS-DHBA resin was applied to the adsorption/collection of uranium in tap water, river water and seawater samples with satisfactory results. The validation of the proposed method was carried out by analyzing uranium in the standard reference materials of SLRS-4, CASS-4, and NASS-5 after passing through the CCTS-DHBA resin, and the results showed good agreement with the certified values.  相似文献   

14.
Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(6):769-774
A new on-line flow injection (FI) pre-treatment system using a disk-type chelating resin (5 mm diameter, 0.5 mm thickness) was developed for the simultaneous multi-element determination of trace metals in sea-water samples by inductively coupled plasma mass spectrometry (ICP-MS). A chelating resin possessing an iminodiacetate (IDA) functional group was used for the collection of trace elements and the elimination of alkali and alkaline earth metals in highly concentrated salt solution. A 1 ml volume of a sea-water sample (pH 5.5) was applied to the chelating resin disk. Considering the removal efficiency for Ca, 50 mM ammonium acetate buffer solution (pH 5.5) was chosen as a sample carrier. The enriched trace metals were eluted with 0.1 M nitric acid and the eluate flowed into the ICP-MS system. The processing time for one sample was < 6 min (350 s). One of the important observations is the possibility of working with a low recovery, even lower than 50%. For example, several elements such as Mn, Cr, As, Mo, Ba and U, the recovery of which was < 50% in a batch-wise method, showed good linearity and reproducibility. The proposed method was evaluated by analyzing two kinds of sea-water certified reference materials, CASS-4 and NASS-5. Analytical data for eight heavy metals, V, Mn, Co, Ni, Cu, Mo, Cd and U, obtained from the present study agreed well with the certified values.  相似文献   

15.
A lanthanum (La) coprecipitation method with low sample consumption was explored for the preconcentration of oxo-anion forming elements prior to a measurement by inductively coupled plasma mass spectrometry (ICP-MS). The preconcentration procedure was composed of two main steps: (1) the formation of a coprecipitate with the lowest possible La and (2) the redissolution of target analytes with minimal use of nitric acid, and the elimination of high concentration La from the analysis sample. Each step was performed in a 25 mL-volume syringe to reduce the sample consumption and to avoid contamination from the experimental environment. Various parameters, such as the concentration and volume of La added into the sample solution, the precipitation pH, the aging time, and the volume of HNO(3) were optimized to obtain good recoveries and high detection sensitivities for V, As, Sb, and W, which could be hardly recovered by solid-phase extraction using a chelating resin. The obtained method was evaluated through the analysis of seawater reference materials (CASS-4 and NASS-5). The recoveries exceeded 80%, and the observed values were in good agreement with the certified values.  相似文献   

16.
应用离子色谱离线螯合及ICP-MS测定海水中多种痕量元素   总被引:1,自引:0,他引:1  
简要介绍如何构建和运用离子色谱离线螯合系统结合ICP-MS方法分析海水中的痕量元素.  相似文献   

17.
Copper is an essential trace metal that shows a vertical recycled-scavenged profile in the ocean. To help elucidate the biogeochemical cycling of Cu in the present and past oceans, it is important to determine the distribution of Cu isotopes in seawater. However, precise isotopic analysis of Cu has been impaired by the low concentrations of Cu as well as co-existing elements that interfere with measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The objective of this study is to develop a simple Cu pre-concentration method using Nobias-chelate PA1 resin (Hitachi High Technologies). This extraction followed by anion exchange, allows precise analysis of the Cu isotopic composition in seawater. Using this method, Cu was quantitatively concentrated from seawater and >99.9999% of the alkali and alkaline earth metals were removed. The technique has a low procedural blank of 0.70 ng for Cu for a 2 L sample and the precision of the Cu isotopic analysis was ±0.07‰ (±2SD, n = 6). We applied this method to seawater reference materials (i.e., CASS-5 and NASS-6) and seawater samples obtained from the northwestern Pacific Ocean. The range of dissolved δ65Cu was 0.40–0.68‰.  相似文献   

18.
A rapid separation and preconcentration method was developed for the determination of trace metals Cu, Zn, Cd, and Pb in seawater using a minicolumn packed with thiol cotton fiber (TCF) coupled with inductively coupled plasma mass spectrometry (ICP-MS). Preconcentration parameters, such as seawater sample volume and flow rate and eluent hydrochloric acid concentration, volume and flow rate, were optimized. Under the optimized conditions, trace metals Cu, Zn, Cd, and Pb in seawater can be determined with no interference from saline matrices. When a sample volume of 1500 ml and a sample flow rate of 15 ml min(-1) were used, the preconcentration factor of 1500 and RSD value of <7% at ng ml(-1) were achieved. The accuracy of the recommended method was verified by the analysis of certified reference materials.  相似文献   

19.
Qiang Fu  Qiuquan Wang 《Talanta》2007,72(4):1248-1254
A newly synthesized alkyl phosphinic acid resin (APAR) was used for on-line preconcentration of trace rare earth elements (REES, lanthanides including yttrium) and then determined by inductively coupled plasma mass spectrometry. REEs in seawater could be on-line concentrated on the APAR packed column (4.6 mm i.d. × 50 mm in length), and eluted from the column with 0.5 mL 0.1 mol L−1 nitric acid within 30 s. An enrichment factor of nearly 400 was achieved for all REEs when the seawater sample volume was 200 mL, while the matrix and coexisting spectrally interfering ions such as barium, tin and antimony could be simultaneously separated. The detection limits of this proposed method for REEs were in the range from 1.43 pg L−1 of holmium to 12.7 pg L−1 of lanthanum. The recoveries of REEs were higher than 97.9%, and the precision of the relative standard deviation (R.S.D., n = 6) was less than 5%. The method has been applied to the determination of soluble REEs in seawater.  相似文献   

20.
A downscaled solid phase (SPE) device applicable for sample preparation prior to ICP-MS monitoring, have been constructed making use of the lab on a chip concept. Standard photolithography and wet chemical etching were used to fabricate glass microfluidic devices accommodating three microchannels, each of them incorporating a defined section that could be packed with SPE materials; selective chelating resin. The microfluidic device was interfaced with the ICP-MS instrument throughout a low flow rate concentric nebuliser using a Teflon connector, and coupled with a flow injection manifold delivering samples and reagents via a manually operated splitting valve. The feasibility of the miniaturized prototype to perform SPE of trace metals was proved by analyzing trace metals, Cd, Co, and Ni, in seawater reference materials; CASS-2 and SLEW-1. The obtained result was in good agreement with the certified values. The device could be used as a remote miniaturized sample treatment for field work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号