首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
氧化锆增韧陶瓷的相变及相变增韧   总被引:13,自引:0,他引:13  
  相似文献   

2.
晶须和相变复合增韧陶瓷的复合增韧模型   总被引:8,自引:0,他引:8  
建立了晶须和相变复合增韧陶瓷的复合增韧模型,其中晶须增韧考虑了裂纹桥联和裂纹偏转两种机理;相变增韧在考虑体膨胀作用的基础上,用切应变影响因子来考虑切应变增韧效应.计算结果表明,相变增韧、桥联增韧和裂纹偏转增韧存在相干性,相变增韧降低晶须增韧效果,而晶须增韧促进相变增韧效果,SiCw/ZrO2(2mol%Y2O3)/Al2O3断裂韧性的计算结果与实验结果吻合.  相似文献   

3.
本文阐述了氧化锆增韧陶瓷(ZTC)的相变增韧机理,并探讨了热处理工艺对ZTC的相变及显微组织的影响规律。  相似文献   

4.
层状复合陶瓷增韧机理的数值模拟   总被引:3,自引:0,他引:3  
基于多层梁模型,在考虑材料非均匀性的基础上,采用有限元数值模拟的方法研究了层状复合陶瓷的断裂行为.给出了复合陶瓷模型在三点弯曲的加载条件下,裂纹拐折和扩展的过程,验证了层状复合陶瓷的主要增韧机理:裂纹沿软层界面拐折耗能.在此基础上,研究了不同参数条件下,层状复合陶瓷韧性的变化规律.  相似文献   

5.
对通过热压烧结法制备的3种陶瓷99.5vol%Al2O3(AD995)、ZrO2(15vol%)/Al2O3和ZrO2(25vol%)/Al2O3的力学性能和增韧机制进行了实验和理论研究。基于复合材料细观力学理论并考虑ZrO2的相变特性,建立了描述ZrO2/Al2O3陶瓷力学性能的本构模型。结果表明:ZrO2的加入细化了基体Al2O3晶粒,ZrO2/Al2O3陶瓷的致密性得到提高;3种陶瓷试件的破坏呈现小变形到脆性破坏的特点,压缩加载下试件应力-应变曲线近似为线性关系;AD995陶瓷的断裂韧性为5.65 MPa·m1/2,ZrO2(25vol%)/Al2O3陶瓷的断裂韧性为8.42 MPa·m1/2,提高了近50%;随ZrO2增韧相含量的增加,ZrO2/Al2O3陶瓷的弹性模量降低而断裂韧性增加,这一变化趋势与实验结果有良好的一致性。  相似文献   

6.
Mg-PSZ陶瓷应力诱发马氏体相变的类型与机制   总被引:2,自引:1,他引:1  
用透射电子显微镜观察了 Mg-PSZ 陶瓷中 t-ZrO_2析出体的方形截面和曲折状的晶界。通过试验观察,确定有四类应力诱发马氏体相变。裂纹扩展过程中各类增韧机制如下:(1)微裂纹萌生;(2)裂纹尖端钝化;(3)裂纹分岔;(4)裂纹弯曲。晶体学研究表明相变孪晶的类型和 m-ZrO_2及 t-ZrO_2间的位向关系决定于切应力的方向。  相似文献   

7.
四方相氧化锆多晶陶瓷的力学性能及其增韧机理的研究   总被引:10,自引:4,他引:6  
研究了 Y_2O_3的含量和热压工艺对四方相 ZrO_2多晶陶瓷(Y—TZP)力学性能的影响。含有2.8mol%Y_2O_3的热压 Y—TZP 的断裂韧性 K_(1c) 和断裂强度分别为15.3±1.9MPam~(1/2)和15.7±0.9×10~2MPa。观察了微裂纹尖端及其周围的相变过程。并非所有从四方相 ZrO_2到单斜相的相变对增韧和增强具有相同的作用.  相似文献   

8.
层状复合是一种新型陶瓷增韧构型。本文着重讨论了层状复合陶瓷断裂特性,包括几种主要的增韧机制的分析和影响因素的讨论。  相似文献   

9.
陈蓓  丁培道 《材料导报》2001,15(6):28-29
重点介绍了强界面结合层状陶瓷的研究体系和现状,对残余压(拉)应力增韧增强层陶瓷的机理作了进一步分析和说明,在此基础上总结出两个层状材料的残余应力模型公式 ,为进一步的强界面结合层状陶瓷的设计提供理论依据,强界面结合层状陶瓷的研究为结构陶瓷的工程应用开辟新的途径并提供高的可靠性。  相似文献   

10.
氧化铝层状复合陶瓷的断裂机理   总被引:4,自引:0,他引:4  
在最佳配比及烧结制度下,将一定比例的含氟金云母与氧化铝混合料辊轧后的薄片同氧化铝基体薄片交替地作层状叠台,经1600℃烧结后,在含氟金云母层内形成了K2O-MgO-Al2O3-SiO2系的玻璃陶瓷,复合后的层状陶瓷其断裂途径呈台阶状。同无层的化铝基体相比,其弯曲强度基本相同,但其断裂韧性Klc值却提高了近60%。  相似文献   

11.
ZrO2/SiC-WSi2/MoSi2纳米复相陶瓷制备及增韧机制探讨   总被引:4,自引:0,他引:4  
利用扫描电镜、图像分析仪以及X射线衍射仪研究了ZrO2/SiC-WSi2/MoSi2复合粉末的分散、热压试样结构、组织以及断口形貌和断裂韧性之间的相互关系.研究表明:综合利用球磨、酒精清洗、超声波振荡能很好地实现纳米/微米颗粒的分散,团聚现象较轻.SiC,Zro2纳米颗粒的协同复合化以及W的合金化能使复相陶瓷晶粒细化,增韧效果明显,断裂韧性可达8.13 MPa·m1/2,断口呈现出以沿晶为主、穿晶为辅的混合断裂特征.复相陶瓷的增韧主要是通过晶粒细化、裂纹偏转、微裂纹形成、桥联等机制的综合作用.  相似文献   

12.
We study the variation of the fracture toughness KIc ofZrO2 - Y2 O3 ceramics (density 98%) as a function of the testing machine crosshead speed (0.005–50 mm/min) and preloading at KI < Kc. The fracture toughness is shown to be practically constant in the speed range from 0.05 to 5 mm/min. At a loading rate of 50 mm/min, the quantity KIc substantially decreases (by a factor of more than two), whereas at a rate of 0.005 mm/min it slightly increases. Preloading leads to a 1.5-fold increase in KIc. Variation of the fracture toughness is associated with structural transformations.  相似文献   

13.
本研究在ZrO2基体表面涂覆一薄层Al2O3涂层, 利用基体与涂层之间热膨胀系数不匹配, 在Al2O3-ZrO2预应力陶瓷(简称ACZS预应力陶瓷)表层引入压应力。采用维氏压痕法评价残余应力对ACZS预应力陶瓷的表层和基体中裂纹扩展阻力的影响。理论分析结合实验结果表明: 表层的压应力使得ACZS预应力陶瓷的裂纹扩展阻力增大, 最终导致强度和损伤容限提高; 且ACZS预应力陶瓷表层的压应力和裂纹扩展阻力随着基体截面积与涂层截面积比值的增加而增大。当ZrO2基体表层的Al2O3涂层厚度为40 μm时, 表层压应力使ACZS预应力陶瓷的弯曲强度达到(1207±20) MPa, 相比于同种工艺下制备的ZrO2陶瓷强度提高了32%, 同时也是Al2O3强度的3倍。此外, ACZS预应力陶瓷也表现出很好的抗热震性能。  相似文献   

14.
碳化硅陶瓷以其优异的性能被广泛利用于各种领域,但其脆性限制了其性能的发挥,因此其增韧技术得到广泛研究并取得良好效果。综合评述了碳化硅陶瓷增韧机理和增韧方法的研究进展,包括晶须或纤维增韧、颗粒弥散增韧、表面改性技术增韧、自增韧、层状结构复合增韧的增韧机理和方法进。  相似文献   

15.
介绍了几种相转变韧化机制,主要包括ZrO2相变增韧、铁电/压电性畴转变增韧、铁弹性畴转变增韧的增韧机理和研究进展。提出一种新的相转变增韧机制——铁磁性畴转变增韧机制,即利用铁磁相的磁畴转变或压磁效应来实现能量耗散,从而达到增韧效果,探讨了其可能性。  相似文献   

16.
17.
以2种粒径分布不同的ZrO_2微粉为原料,利用离心成型技术制备孔梯度分布的ZrO_2多孔陶瓷.测量了ZrO_2颗粒在不同pH值下的Zeta电位,研究了离心加速度和浆料固相含量对ZrO_2颗粒分离现象的影响,观察了烧结产物的微观形貌、孔隙度以及孔径分布.研究结果表明,在pH=10时,ZrO_2颗粒的Zeta电位最高,浆料具有良好的分散性.在较低的固相含量和较高的离心加速度下,ZrO_2颗粒的分离现象明显,孔隙呈梯度分布.40%(体积分数)固含量ZrO_2浆料离心所得样品在1400℃烧结3h后,孔隙呈现良好的梯度分布,其底部孔隙度为24.6%,气孔尺寸在1~3μm之间;顶部孔隙度为15.2%,气孔尺寸大多在0.3μm以下.  相似文献   

18.
利用扫描和透射电子显微镜及X-rays 衍射仪等, 对ZrO2 层状复合陶瓷的显微形貌特征、断裂相变量及晶体学位向关系进行了深入研究。研究结果表明, ZrO2 层状陶瓷由于界面压应力的作用, 抑制了烧结过程中晶粒的生长速度及冷却后四方相向单斜相的转变, 提高了可相变四方相的含量, 提高了断裂相变量, 改善了材料的力学性能, 但却没有改变四方相和单斜相之间的晶体学位向关系, 在层状ZrO2 陶瓷中, (100) m/ / (010) t 的晶体学位向关系仍然存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号