首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit γ-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels.
  2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique.
  3. GABA (50 μM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3–10 μM) and picrotoxin (0.3–10 μM), with IC50 values and 95% confidence intervals (CI) of 1.2 μM (1.1–1.4) and 3.6 μM (3.0–4.3), respectively, and were potentiated by sodium pentobarbitone (30 μM) and diazepam (1 μM) to (mean±s.e.mean) 168±18% and 117±4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 μM)-evoked responses were inhibited by MDL 72222 (1 μM) to 10±4% of control; DMPP (10 μM)-evoked responses were inhibited by hexamethonium (100 μM) to 12±5% of control, and αbMeATP (30 μM)-evoked responses were inhibited by PPADS (10 μM) to 21±5% of control. Together, these data are consistent with activation of GABAA, 5-HT3, nicotinic ACh and P2X receptors, respectively.
  4. Ciprofloxacin (10–3000 μM) inhibited GABAA-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 μM (148–275). BPAA (1–1000 μM) had little or no effect on the GABAA-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times.
  5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 μM), BPAA (100 μM) or the combination of these drugs (both at 100 μM).
  6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 μM (2.8–4.5), a value not significantly different from that determined in the vagus nerve. Ciprofloxacin also inhibited the GABA-evoked response with an IC50 of 334 μM (256–437) and BPAA (100 μM) potentiated these antagonist effects. However, the magnitude of the synergy was 48 times less than that seen in the vagus nerve.
  7. These data indicate that ciprofloxacin and BPAA are selective antagonists of GABAA receptors, an action that may contribute to their excitatory effects in vivo. Additionally, our data suggest that the molecular properties of GABAA receptors in different regions of the CNS influence the extent to which these drugs synergistically inhibit the GABAA receptor.
  相似文献   

2.
  1. It is unclear whether GABAA receptor-mediated hyperpolarizing and depolarizing synaptic potentials (IPSPAs and DPSPAs, respectively) are evoked by (a) the same populations of GABAergic interneurones and (b) exhibit similar regulation by allosteric modulators of GABAA receptor function. We have attempted to address these questions by investigating the effects of (a) known agonists for presynaptic receptors on GABAergic terminals, and (b) a range of GABAA receptor ligands, on each response.
  2. The GABA uptake inhibitor NNC 05-711 (10 μM) enhanced whereas bicuculline (10 μM) inhibited both IPSPAs and DPSPAs.
  3. (−)-Baclofen (5 μM), [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO; 0.5 μM), and carbachol (10 μM) caused substantial depressions (up to 99%) of DPSPAs that were reversed by CGP 55845A (1 μM), naloxone (10 μM) and atropine (5 μM), respectively. In contrast, 2-chloroadenosine (CADO; 10 μM) only slightly depressed DPSPAs. Quantitatively, the effect of each agonist was similar to that reported for IPSPAs.
  4. The neurosteroid ORG 21465 (1–10 μM), the anaesthetic propofol (50–500 μM), the barbiturate pentobarbitone (100–300 μM) and zinc (50 μM) all enhanced DPSPAs and IPSPAs.
  5. The benzodiazepine (BZ) agonist flunitrazepam (10–50 μM) and inverse agonist DMCM (1 μM) caused a respective enhancement and inhibition of both IPSPAs and DPSPAs. The BZω1 site agonist zolpidem (10–30 μM) produced similar effects to flunitrazepam.
  6. The anticonvulsant loreclezole (1–100 μM) did not affect either response.
  7. These data demonstrate that similar populations of inhibitory interneurones can generate both IPSPAs and DPSPAs by activating GABAA receptors that are subject to similar allosteric modulation.
  相似文献   

3.
  1. The effect of protein tyrosine kinase inhibitors on human adenosine A1 receptor-mediated [3H]-inositol phosphate ([3H]-IP) accumulation has been studied in transfected Chinese hamster ovary cells (CHO-A1) cells.
  2. In agreement with our previous studies the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated the accumulation of [3H]-IPs in CHO-A1 cells. Pre-treatment with the broad spectrum tyrosine kinase inhibitor genistein (100 μM; 30 min) potentiated the responses elicited by 1 μM (199±17% of control CPA response) and 10 μM CPA (234±15%). Similarly, tyrphostin A47 (100 μM) potentiated the accumulation of [3H]-IPs elicited by 1 μM CPA (280±32%).
  3. Genistein (EC50=13.7±1.2 μM) and tyrphostin A47 (EC50=10.4±3.9 μM) potentiated the [3H]-IP response to 1 μM CPA in a concentration-dependent manner.
  4. Pre-incubation with the inactive analogues of genistein and tyrphostin A47, daidzein (100 μM; 30 min) and tyrphostin A1 (100 μM; 30 min), respectively, had no significant effect on the accumulation of [3H]-IPs elicited by 1 μM CPA.
  5. Genistein (100 μM) had no significant effect on the accumulation of [3H]-IPs produced by the endogenous thrombin receptor (1 u ml−1; 100±10% of control response). In contrast, tyrphostin A47 produced a small augmentation of the thrombin [3H]-IP response (148±13%).
  6. Genistein (100 μM) had no effect on the [3H]-IP response produced by activation of the endogenous Gq-protein coupled CCKA receptor with the sulphated C-terminal octapeptide of cholecystokinin (1 μM CCK-8; 96±6% of control). In contrast, tyrphostin A47 (100 μM) caused a small but significant increase in the response to 1 μM CCK-8 (113±3% of control).
  7. The phosphatidylinositol 3-kinase inhibitor LY 294002 (30 μM) and the MAP kinase kinase inhibitor PD 98059 (50 μM) had no significant effect on the [3H]-IP responses produced by 1 μM CPA and 1 μM CCK-8.
  8. These observations suggest that a tyrosine kinase-dependent pathway may be involved in the regulation of human adenosine A1 receptor mediated [3H]-IP responses in CHO-A1 cells.
  相似文献   

4.
  1. 5-Hydroxytryptamine (5-HT; 1 nM–100 μM) concentration-dependently inhibited the amplitude and frequency of spontaneous contractions in longitudinal and circular muscles of the porcine myometrium. The circular muscle (EC50; 68–84 nM) was more sensitive than the longitudinal muscle (EC50; 1.3–1.44 μM) to 5-HT. To characterize the 5-HT receptor subtype responsible for inhibition of myometrial contractility, the effects of 5-HT receptor agonists on spontaneous contractions and of 5-HT receptor antagonists on inhibition by 5-HT were examined in circular muscle preparations.
  2. Pretreatment with tetrodotoxin (1 μM), propranolol (1 μM), atropine (1 μM), guanethidine (10 μM) or L-NAME (100 μM) failed to change the inhibition by 5-HT, indicating that the inhibition was due to a direct action of 5-HT on the smooth muscle cells.
  3. 5-CT, 5-MeOT and 8-OH-DPAT mimicked the inhibitory response of 5-HT, and the rank order of the potency was 5-CT>5-HT>5-MeOT>8-OH-DPAT. On the other hand, oxymethazoline, α-methyl-5-HT, 2-methyl-5-HT, cisapride, BIMU-1, BIMU-8, ergotamine and dihydroergotamine had almost no effect on spontaneous contractions, even at 10–100 μM.
  4. Inhibition by 5-HT was not decreased by either pindolol (1 μM), ketanserin (1 μM), tropisetron (10 μM), MDL72222 (1 μM) or GR113808 (10 μM), but was antagonized by the following compounds in a competitive manner (with pA2 values in parentheses): methiothepin (8.05), methysergide (7.92), metergoline (7.4), mianserin (7.08), clozapine (7.06) and spiperone (6.86).
  5. Ro 20-1724 (20 μM) and rolipram (10 μM) significantly enhanced the inhibitory response of 5-HT, but neither zaprinast (10 μM) nor dipyridamole (10 μM) altered the response of 5-HT.
  6. 5-HT (1 nM–1 μM) caused a concentration-dependent accumulation of intracellular cyclic AMP in the circular muscle.
  7. From the present results, the 5-HT receptor, which is functionally correlated with the 5-HT7 receptor, mediates the inhibitory effect of 5-HT on porcine myometrial contractility. This inhibitory response is probably due to an increase in intracellular cyclic AMP through the activation of adenylate cyclase that is positively coupled to 5-HT7 receptors.
  相似文献   

5.
  1. The site(s) at which P2-receptor agonists act to evoke contractions of the rat isolated tail artery was studied by use of P2-receptor antagonists and the extracellular ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Suramin (1 μM–1 mM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (0.3–300 μM) inhibited contractions evoked by equi-effective concentrations of α,β-methyleneATP (α,β-meATP) (5 μM), 2-methylthioATP (2-meSATP) (100 μM) and adenosine 5′-triphosphate (ATP) (1 mM) in a concentration-dependent manner. Responses to α,β-meATP and 2-meSATP were abolished, but approximately one third of the peak response to ATP was resistant to suramin and PPADS.
  3. Contractions evoked by uridine 5′-triphosphate (UTP) (1 mM) were slightly inhibited by suramin (100 and 300 μM) and potentiated by PPADS (300 μM).
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by 2-meSATP (100 μM) and reduced those to ATP (1 mM) and UTP (1 mM) to 15±3% and 68±4% of control.
  5. Responses to α,β-meATP (5 μM) and 2-meSATP (100 μM) were abolished when tissues were bathed in nominally calcium-free solution, while the peak contractions to ATP (1 mM) and UTP (1 mM) were reduced to 24±6% and 61±13%, respectively, of their control response.
  6. ARL 67156 (3–100 μM) potentiated contractions elicited by UTP (1 mM), but inhibited responses to α,β-meATP (5 μM), 2-meSATP (100 μM) and ATP (1 mM) in a concentration-dependent manner.
  7. These results suggest that two populations of P2-receptors are present in the rat tail artery; ligand-gated P2X1-receptors and G-protein-coupled P2Y-receptors.
  相似文献   

6.
  1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM).
  2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50±s.e.mean values 6.15±0.24, 5.99±0.26 and 5.51±0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM).
  3. In the epididymal half of the vas deferens NECA potentiated (at ⩽100 nM) and inhibited (at ⩾1 μM) electrically-evoked contractions. In the presence of the non-selective α-adrenoceptor antagonist phentolamine (3 μM), the α1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05±0.25, 5.97±0.29 and 5.71±0.27, respectively). CPA (at 10 μM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14±0.67); this effect was antagonized by DPCPX (30 nM, apparent pKB 8.26±0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 μM), CPA (up to 1 μM) potentiated electrically-evoked contractions.
  4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49±0.62, 7.65±0.74 and 5.84±0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pKB value of 7.64±0.64.
  5. The α1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 μM) potentiated responses to phenylephrine (⩽1 μM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 μM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 μM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57±0.54 and 8.08±0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis.
  6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of α1-adrenoceptor-, but not of ATP-induced contractility.
  相似文献   

7.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

8.
  1. The mitogen-activated protein (MAP) kinase signalling pathway can be activated by a variety of heterotrimeric Gi/Go protein-coupled and Gq/G11 protein-coupled receptors. The aims of the current study were: (i) to investigate whether the Gi/Go protein-coupled adenosine A1 receptor activates the MAP kinase pathway in transfected Chinese hamster ovary cells (CHO-A1) and (ii) to determine whether adenosine A1 receptor activation would modulate the MAP kinase response elicited by the endogenous P2Y2 purinoceptor.
  2. The selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50 7.1±0.4 nM). CPA-mediated increases in MAP kinase activity were blocked by PD 98059 (50 μM; 89±4% inhibition), an inhibitor of MAP kinase kinase 1 (MEKI) activation, and by pre-treating cells with pertussis toxin (to block Gi/Go-dependent pathways).
  3. Adenosine A1 receptor-mediated activation of MAP kinase was abolished by pre-treatment with the protein tyrosine inhibitor, genistein (100 μM; 6±10% of control). In contrast, daidzein (100 μM), the inactive analogue of genistein had no significant effect (96±12 of control). MAP kinase responses to CPA (1 μM) were also sensitive to the phosphatidylinositol 3-kinase inhibitors wortmannin (100 nM; 55±8% inhibition) and LY 294002 (30 μM; 40±5% inhibition) but not to the protein kinase C (PKC) inhibitor Ro 31-8220 (10 μM).
  4. Activation of the endogenous P2Y2 purinoceptor with UTP also stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50=1.6±0.3 μM). The MAP kinase response to UTP was partially blocked by pertussis toxin (67±3% inhibition) and by the PKC inhibitor Ro 31-8220 (10 μM; 45±5% inhibition), indicating the possible involvement of both Gi/Go protein and Gq protein-dependent pathways in the overall response to UTP.
  5. CPA and UTP stimulated concentration-dependent increases in the phosphorylation state of the 42 kDa and 44 kDa forms of MAP kinase as demonstrated by Western blotting.
  6. Co-activation of CHO-A1 cells with CPA (10 nM) and UTP (1 μM) produced synergistic increases in MAP kinase activity which were not blocked by the PKC inhibitor Ro 31-8220 (10 μM).
  7. Adenosine A1 and P2Y2 purinoceptor activation increased the expression of luciferase in CHO cells transfected with a luciferase reporter gene containing the c-fos promoter. However, co-activating these two receptors produced only additive increases in luciferase expression.
  8. In conclusion, our studies have shown that the transfected adenosine A1 receptor and the endogenous P2Y2 purinoceptor couple to the MAP kinase signalling pathway in CHO-A1 cells. Furthermore, co-stimulation of the adenosine A1 receptor and the P2Y2 purinoceptor produced synergistic increases in MAP kinase activity but not c-fos mediated luciferase expression.
  相似文献   

9.
  1. The effects of the antidiabetic agent englitazone and the anorectic drug ciclazindol on ATP-sensitive K+ (KATP) channels activated by diazoxide and leptin were examined in the CRI-G1 insulin-secreting cell line using whole cell and single channel recording techniques.
  2. In whole cell current clamp mode, the hyperglycaemic agent diazoxide (200 μM) and the ob gene product leptin (10 nM) hyperpolarised CRI-G1 cells by activation of KATP currents. KATP currents activated by either agent were inhibited by tolbutamide, with an IC50 for leptin-activated currents of 9.0 μM.
  3. Application of englitazone produced a concentration-dependent inhibition of KATP currents activated by diazoxide (200 μM) with an IC50 value of 7.7 μM and a Hill coefficient of 0.87. In inside-out patches englitazone (30 μM) also inhibited KATP channel currents activated by diazoxide by 90.8±4.1%.
  4. In contrast, englitazone (1–30 μM) failed to inhibit KATP channels activated by leptin, although higher concentrations (>30 μM) did inhibit leptin actions. The englitazone concentration inhibition curve in the presence of leptin resulted in an IC50 value and Hill coefficient of 52 μM and 3.2, respectively. Similarly, in inside-out patches englitazone (30 μM) failed to inhibit the activity of KATP channels in the presence of leptin.
  5. Ciclazindol also inhibited KATP currents activated by diazoxide (200 μM) in a concentration-dependent manner, with an IC50 and Hill coefficient of 127 nM and 0.33, respectively. Furthermore, application of ciclazindol (1 μM) to the intracellular surface of inside-out patches inhibited KATP channel currents activated by diazoxide (200 μM) by 86.6±8.1%.
  6. However, ciclazindol was much less effective at inhibiting KATP currents activated by leptin (10 nM). Ciclazindol (0.1–10 μM) had no effect on KATP currents activated by leptin, whereas higher concentrations (>10 μM) did cause inhibition with an IC50 value of 40 μM and an associated Hill coefficient of 2.7. Similarly, ciclazindol (1 μM) had no significant effect on KATP channel activity following leptin addition in excised inside-out patches.
  7. In conclusion, KATP currents activated by diazoxide and leptin show different sensitivity to englitazone and ciclazindol. This may be due to differences in the mechanism of activation of KATP channels by diazoxide and leptin.
  相似文献   

10.
  1. The aim of study was to characterize endothelin (ET)-induced vasodilatation in isolated extrapulmonary rat arteries (EPA) and in intrapulmonary arteries (IPA) preconstricted with 1 μM phenylephrine.
  2. The ET-3 (1 nM–100 nM)- and ET-1 (10 nM–100 nM)-induced transient vasodilatations in EPA were more potent than those in IPA. The vasodilatation induced by ET-3 (100 nM) was larger than that induced by ET-1 (100 nM).
  3. Both the ETB antagonist, BQ788 (3 μM) and or endothelium denudation, but not the ETA antagonist, BQ123 (3 μM), abolished the vasodilatation induced by ET-1 or ET-3 (100 nM each) in EPA and in IPA. The ATP-sensitive K+channel blocker, glibenclamide (20 μM) and the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA, 1 mM) suppressed the ET-induced vasodilatation in EPA and in IPA.
  4. We conclude that the vasodilatation induced by endothelins is markedly reduced in rat isolated IPA, and suggest that the endothelial ETB-mediated vasodilatation varies depending on rat pulmonary arterial regions. Furthermore, ETB-mediated vasodilatation involves activation of ATP-sensitive K+ channels and of nitric oxide synthase in rat isolated EPA and IPA.
  相似文献   

11.
  1. Radioligand binding and patch-clamp techniques were used to study the actions of γ-aminobutyric acid (GABA) and the general anaesthetics propofol (2,6-diisopropylphenol), pentobarbitone and 5α-pregnan-3α-ol-20-one on rat α1 and β3 GABAA receptor subunits, expressed either alone or in combination.
  2. Membranes from HEK293 cells after transfection with α1 cDNA did not bind significant levels of [35S]-tert-butyl bicyclophosphorothionate ([35S]-TBPS) (<0.03 pmol mg−1 protein). GABA (100 μM) applied to whole-cells transfected with α1 cDNA and clamped at −60 mV, also failed to activate discernible currents.
  3. The membranes of cells expressing β3 cDNAs bound [35S]-TBPS (∼1 pmol mg−1 protein). However, the binding was not influenced by GABA (10 nM–100 μM). Neither GABA (100 μM) nor picrotoxin (10 μM) affected currents recorded from cells expressing β3 cDNA, suggesting that β3 subunits do not form functional GABAA receptors or spontaneously active ion channels.
  4. GABA (10 nM–100 μM) modulated [35S]-TBPS binding to the membranes of cells transfected with both α1 and β3 cDNAs. GABA (0.1 μM–1 mM) also dose-dependently activated inward currents with an EC50 of 9 μM recorded from cells transfected with α1 and β3 cDNAs, clamped at −60 mV.
  5. Propofol (10 nM–100 μM), pentobarbitone (10 nM–100 μM) and 5α-pregnan-3α-ol-20-one (1 nM–30 μM) modulated [35S]-TBPS binding to the membranes of cells expressing either α1β3 or β3 receptors. Propofol (100 μM), pentobarbitone (1 mM) and 5α-pregnan-3α-ol-20-one (10 μM) also activated currents recorded from cells expressing α1β3 receptors.
  6. Propofol (1 μM–1 mM) and pentobarbitone (1 mM) both activated currents recorded from cells expressing β3 homomers. In contrast, application of 5α-pregnan-3α-ol-20-one (10 μM) failed to activate detectable currents.
  7. Propofol (100 μM)-activated currents recorded from cells expressing either α1β3 or β3 receptors reversed at the C1 equilibrium potential and were inhibited to 34±13% and 39±10% of control, respectively, by picrotoxin (10 μM). 5α-Pregnan-3α-ol-20-one (100 nM) enhanced propofol (100 μM)-evoked currents mediated by α1β3 receptors to 1101±299% of control. In contrast, even at high concentration 5α-pregnan-3α-ol-20-one (10 μM) caused only a modest facilitation (to 128±12% of control) of propofol (100 μM)-evoked currents mediated by β3 homomers.
  8. Propofol (3–100 μM) activated α1β3 and β3 receptors in a concentration-dependent manner. For both receptor combinations, higher concentrations of propofol (300 μM and 1 mM) caused a decline in current amplitude. This inhibition of receptor function reversed rapidly during washout resulting in a ‘surge'' current on cessation of propofol (300 μM and 1 mM) application. Surge currents were also evident following pentobarbitone (1 mM) application to cells expressing either receptor combination. By contrast, this phenomenon was not apparent following applications of 5α-pregnan-3α-ol-20-one (10 μM) to cells expressing α1β3 receptors.
  9. These observations demonstrate that rat β3 subunits form homomeric receptors that are not spontaneously active, are insensitive to GABA and can be activated by some general anaesthetics. Taken together, these data also suggest similar sites on GABAA receptors for propofol and barbiturates, and a separate site for the anaesthetic steroids.
  相似文献   

12.
  1. The site(s) at which diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) and diadenosine 5′, 5′′′-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (300 nM–30 μM), suramin (3–100 μM) and pyridoxal-5′-phosphate (P-5-P) (3–1000 μM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 μM), AP4A (30 μM) and α,β-methyleneATP (α,β-meATP) (1 μM), in a concentration-dependent manner and abolished them at the highest concentrations used.
  3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and α,β-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against α,β-meATP and AP5A or α,β-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism.
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by AP5A (3 μM) and AP4A (30 μM), but had no effect on those elicited by noradrenaline (100 μM).
  5. ARL 67156 (100 μM) reversibly potentiated contractions evoked by AP4A (30 μM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 μM).
  6. It is concluded that AP4A and AP5A act at the P2X1-receptor, or a site similar to the P2X1-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.
  相似文献   

13.
  1. The interaction of melatonin (N-acetyl-5-methoxytryptamine) with 5-hydroxytryptamine4 (5-HT4) receptors and/or with melatonin receptors (ML1, ML2 sites) has been assessed in isolated strips of the guinea-pig proximal colon. In the same preparation, the pharmacological profile of a series of melatonin agonists (2-iodomelatonin, 6-chloromelatonin, N-acetyl-5-hydroxytryptamine (N-acetyl-5-HT), 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT)) was investigated.
  2. In the presence of 5-HT1/2/3 receptor blockade with methysergide (1 μM) and ondansetron (10 μM), melatonin (0.1 nM–10 μM), 5-HT (1 nM–1 μM) and the 5-HT4 receptor agonist, 5-methoxytryptamine (5-MeOT: 1 nM–1 μM) caused concentration-dependent contractile responses. 5-HT and 5-MeOT acted as full agonists with a potency (−log EC50) of 7.8 and 8.0, respectively. The potency value for melatonin was 8.7, but its maximum effect was only 58% of that elicited by 5-HT.
  3. Melatonin responses were resistant to atropine (0.1 μM), tetrodotoxin (0.3 μM), and to blockade of 5-HT4 receptors by SDZ 205,557 (0.3 μM) and GR 125487 (3, 30 and 300 nM). The latter antagonist (3 nM) inhibited 5-HT-induced contractions with an apparent pA2 value of 9.6. GR 125487 antagonism was associated with 30% reduction of the 5-HT response maximum. Contractions elicited by 5-HT were not modified when melatonin (1 and 10 nM) was used as an antagonist.
  4. Like melatonin, the four melatonin analogues concentration-dependently contracted colonic strips. The rank order of agonist potency was: 2-iodomelatonin (10.8) >6-chloromelatonin (9.9) ⩾ N-acetyl-5-HT (9.8) ⩾5-MCA-NAT (9.6) >melatonin (8.7), an order typical for ML2 sites. In comparison with the other agonists, 5-MCA-NAT had the highest intrinsic activity.
  5. The melatonin ML1B receptor antagonist luzindole (0.3, 1 and 3 μM) had no effect on the concentration-response curve to melatonin. Prazosin, an α-adrenoceptor antagonist possessing moderate/high affinity for melatonin ML2 sites did not affect melatonin-induced contractions at 0.1 μM. Higher prazosin concentrations (0.3 and 1 μM) caused a non-concentration-dependent depression of the maximal response to melatonin without changing its potency. Prazosin (0.1 and 1 μM) showed a similar depressant behaviour towards the contractile responses to 5-MCA-NAT.
  6. In the guinea-pig proximal colon, melatonin despite some structural similarity with the 5-HT4 receptor agonist 5-MeOT, does not interact with 5-HT4 receptors (or with 5-HT1/2/3 receptors). As indicated by the rank order of agonist potencies and by the inefficacy of luzindole, the most likely sites of action of melatonin are postjunctional ML2 receptors. However, this assumption could not be corroborated with the use of prazosin as this ‘ML2 receptor antagonist'' showed only a non-concentration-dependent depression of the maximal contractile response to both melatonin and 5-MCA-NAT. Further investigation with the use of truly selective antagonists at melatonin ML2 receptors is required to clarify this issue.
  相似文献   

14.
  1. The aim of this study was to characterize the angiotensin II receptors in isolated uterine arteries from non pregnant and pregnant rats, since it has been reported from binding studies that ovine uterine arteries contain AT2 receptors.
  2. Uterine arterial segments were obtained from virgin, non-pregnant and late pregnant (18–21 days) Sprague-Dawley rats and mounted in small vessel myographs. Concentration-response curves were constructed to angiotensin II (1 nM–10 μM) in the absence and presence of various angiotensin II receptor subtype selective compounds. These included losartan (AT1 antagonist; 1, 10 and 100 nM), PD 123319 (AT2 antagonist; 1 μM) and CGP 42112 (AT2 agonist; 1 μM). Responses to angiotensin II were measured as increases in force (mN) and expressed as a per cent of the response to a K+ depolarizing solution.
  3. Losartan (1, 10 and 100 nM) caused significant concentration-dependent rightward shifts of the angiotensin II concentration-response curve in uterine arteries from non-pregnant and pregnant rats. The pA2 values calculated from these data were 9.8 and 9.2, respectively, although the slope of the Schild plot in the non-pregnant group was less than unity.
  4. PD 123319 (1 μM) caused significant 6- and 3 fold leftward shifts of the angiotensin II concentration-response curve in uterine arteries from non-pregnant and pregnant rats, respectively. In vessels from pregnant rats, PD 123319 also significantly increased the maximum response to angiotensin II.
  5. CGP 42112 (1 μM) attenuated the response to angiotensin II of uterine arteries from non-pregnant rats. This was reflected by a 14 fold rightward shift of the angiotensin II concentration-response curve and a decrease in the maximum response. In uterine arteries from pregnant rats, CGP 42112 (1 μM) caused a 3 fold rightward shift of the angiotensin II concentration-response curve, but had no effect on the maximum response.
  6. PD 123319 (1 μM) and CGP 42112 (1 μM) had no effect on the concentration-response curves to phenylephrine (PE) of uterine arteries from non-pregnant or pregnant rats. In addition, CGP 42112 (1 nM–1 mM) had no vasodilator effect on tissues precontracted with phenylephrine.
  7. These results suggest that the contractile responses of the rat uterine artery are mediated by the AT1 receptor. Furthermore, in this vascular preparation, the AT2 receptor appears to inhibit the response mediated by the AT1 receptor, although, this is not uniform between the non-pregnant and pregnant states.
  相似文献   

15.
  1. In the guinea-pig isolated vas deferens preparation bathed in Tyrode''s solution, the prostacyclin analogues, cicaprost, TEI-9063, iloprost, taprostene and benzodioxane-prostacyclin, enhanced twitch responses to submaximal electrical field stimulation (20%-EFS). The high potency of cicaprost (EC150=1.3 nM) and the relative potencies of the analogues (equi-effective molar ratios=1.0, 0.85, 1.6, 17 and 82, respectively) suggest the involvement of a prostacyclin (IP-) receptor.
  2. Maximum enhancement induced by cicaprost in 2.5 mM K+ Krebs-Henseleit solution was similar to that in Tyrode solution (2.7 mM K+), but was progressively reduced as the K+ concentration was increased to 3.9, 5.9 and 11.9 mM. There was also a greater tendency for the other prostacyclin analogues to inhibit EFS responses in 5.9 mM standard K+ Krebs-Henseleit solution; this may be attributed to their agonist actions on presynaptic EP3-receptors resulting in inhibition of transmitter release.
  3. The EFS enhancing action of cicaprost was not affected by the α1-adrenoceptor antagonist prazosin (100 and 1000 nM). Cicaprost (20 and 200 nM) did not affect contractile responses of the vas deferens to either ATP (5 μM) or α,β-methylene ATP (1 μM) in the presence of tetrodotoxin (TTX, 100 nM). In addition, enhancement by cicaprost of responses to higher concentrations of ATP (30 and 300 μM) in the absence of TTX, as shown previously by others, was not seen. Prostaglandin E2 (PGE2, 10 nM) and another prostacyclin analogue TEI-3356 (20 nM) enhanced purinoceptor agonist responses. Unexpectedly, TTX (0.1 and 1 μM) partially inhibited contractions elicited by 10–1000 μM ATP; contractions elicited by 1–3 μM ATP were unaffected. Further studies are required to establish whether a pre- or post-synaptic mechanism is involved.
  4. In a separate series of experiments, cicaprost (5–250 nM), TEI-9063 (3–300 nM), 4-aminopyridine (10–100 μM) and tetraethylammonium (100–1000 μM) enhanced both 20%-EFS responses and the accompanying overflow of noradrenaline to a similar extent. In further experiments with the EP1-receptor antagonist AH 6809, TEI-3356 (1.0–100 nM) and the EP3-receptor agonist, sulprostone (0.1–1.0 nM) inhibited both maximal EFS responses and noradrenaline overflow, thus confirming previous reports of the high activity of TEI-3356 at the EP3-receptor. Cicaprost had no significant effect on noradrenaline overflow at 10 and 100 nM, but produced a modest inhibition at 640 nM.
  5. In conclusion, our studies show that prostacyclin analogues (particularly TEI-3356) can inhibit EFS responses of the guinea-pig vas deferens by acting as agonists at presynaptic EP3-receptors. Prostacyclin analogues (particularly cicaprost and TEI-9063) can also enhance EFS responses through activation of IP-receptors. The mechanism of the enhancement has not been rigorously established but from our results we favour a presynaptic action to increase transmitter release.
  相似文献   

16.
  1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12–14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe.p.s.p.) recorded extracellularly from the stratum radiatum in the CA1 area.
  2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2–50 nM), on the fe.p.s.p. slope (EC50=12.5 (9.2–17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 μM) (EC50=27.2 (21.4–34.5) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 μM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-α-methyl-4-carboxyphenylglycine (MCPG; 500 μM). DHPG (10 μM) itself had an inhibitory effect of 20.1±1.9% (n=4) on the fe.p.s.p. slope.
  3. The concentration-response curves for the inhibitory effects of CPA (2–20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-α-(carboxycyclopropyl)glycine (L-CCG-I; 1 μM), or in the presence of the non-selective mGluR agonist (which activates both group I and II mGluR), (1S,3R)-1-aminocyclopentyl-1,3-dicarboxylate (ACPD; 100 μM). L-CCG-I had no consistent effects and ACPD (100 μM) decreased by 19.4±1.8% (n=4) the fe.p.s.p. slope.
  4. The concentration-response curve for the inhibitory effects of CPA (2–100 nM) on the fe.p.s.p. slope (EC50=8.2 (6.9–9.6) nM) was displaced to the right by the group III mGluR selective agonist, L-2-amino-4-phosphonobutyrate (L-AP4; 25 μM) (EC50=17.7 (13.1–21.9) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by L-AP4 (25 μM) was blocked in the presence of the mGluR antagonist (selective for the group III mGluR), (R,S)-α-methyl-4-phosphonophenylglycine (MPPG; 200 μM).
  5. Both the direct effect of DHPG on synaptic transmission and the attenuation of the inhibitory effect of CPA (10 nM) were prevented in the presence of the protein kinase C selective inhibitors, staurosporine (1 μM) or chelerythrine (5 μM), and thus attributed to activation of protein kinase C.
  6. The attenuation by L-AP4 (25 μM) of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope was also prevented by the protein kinase C selective inhibitors, staurosporine (1 μM) or chelerythrine (5 μM), and thus attributed to activation of protein kinase C. But this effect seemed to be distinct from the direct effect of L-AP4 (25 μM) on synaptic transmission, which was not modified by the protein kinase C selective inhibitors.
  7. We conclude that agonists of metabotropic glutamate receptors (Groups I and III) are able to attenuate the inhibitory effects of adenosine A1 receptor activation in the hippocampus. This interaction may have pathophysiological relevance in hypoxia, in which there is marked release of both excitatory amino acids and the important endogenous neuroprotective substance, adenosine.
  相似文献   

17.
  1. The pharmacological features of the pre- and postsynaptic metabotropic glutamate receptors (mGluRs) present in the guinea-pig olfactory cortex, were examined in brain slices in vitro by use of a conventional intracellular current clamp/voltage clamp recording technique.
  2. Bath-application of trans-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (50 μM) produced a sustained membrane depolarization, increase in cell excitability and induction of a post-stimulus inward (afterdepolarizing) tail current (IADP) (measured under ‘hybrid'' voltage clamp) similar to those evoked by the muscarinic receptor agonist oxotremorine-M (OXO-M, 2 μM).
  3. L-Glutamate (0.25–1 mM, in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 μM DL-amino-5-phosphono valeric acid (DL-APV)) or the broad spectrum mGluR agonists 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), 1S,3S-ACPD (50 μM), ibotenate (Ibo; 25 μM, in the presence of 100 μM DL-APV), the selective mGluR I agonists (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG, 10 μM), (S)-3-hydroxyphenylglycine ((S)-3HPG, 50 μM), or quisqualate (10 μM, in the presence of 20 μM CNQX), but not the mGluR II agonist 2S,1′S,2′S-2-(2′-carboxycyclopropyl)-glycine (L-CCGI, 1 μM) or mGluR III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 1 mM), were all effective in producing membrane depolarization and inducing a post-stimulus IADP. Unexpectedly, the proposed mGluR II-selective agonist (2S,1′R,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)-glycine (DCG-IV, 10 μM, in the presence of 100 μM DL-APV) was also active.
  4. The excitatory effects induced by 10 μM 1S,3R-ACPD were reversibly antagonized by the mGluR I/II antagonist (+)-α-methyl-4-carboxyphenylglycine ((+)-MCPG, 0.5–1 mM), as well as the selective mGluR I antagonists (S)-4-carboxyphenylglycine ((S)-4CPG) and (S)-4-carboxy-3-hydroxyphenyl glycine ((S)-4C3HPG) (both at 1 mM), but not the nonselective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3, 1 mM) or the selective mGluR III antagonist (S)-α-methyl-L-AP4 (MAP4, 1 mM).
  5. The excitatory postsynaptic potentials (e.p.s.ps), induced by single focal stimulation of cortical excitatory fibre tracts, were markedly reduced by 1S,3R-ACPD or L-AP4 (both at 10 μM), and by the selective mGluR II agonists (mGluR I antagonists) (S)-4CPG or (S)-4C3HPG (both at 1 mM) but not (S)-3,5-DHPG or (S)-3HPG (both at 100 μM).
  6. The inhibitory effects of 1S-3R-ACPD, but not L-AP4, were reversibly blocked by (+)-MCPG (1 mM), whereas those produced by L-AP4, but not 1S,3R-ACPD, were blocked by the selective mGluR III antagonist MAP4 (1 mM).
  7. It is concluded that a group I mGluR is most likely involved in mediating excitatory postsynaptic effects, whereas two distinct mGluRs (e.g. group II and III) might serve as presynaptic inhibitory autoreceptors in the guinea-pig olfactory cortex.
  相似文献   

18.
  1. Cumulative concentration-response curves (CRC) to prostaglandin E1 (PGE1), PGE2, PGD2 and PGF (0.01–30 μM) and to the thromboxane A2 (TXA2) receptor agonist U-46619 (0.01–30 μM) were constructed in human isolated detrusor muscle strips both in basal conditions and during electrical field stimulation.
  2. All the agonists tested contracted the detrusor muscle. The rank order of agonist potency was: PGF>U-46619>PGE2 whereas weak contractile responses were obtained with PGD2 and PGE1. Any of the agonists tested was able to induce a clear plateau of response even at 30 μM.
  3. The selective TXA2 antagonist, GR 32191B (vapiprost), antagonized U-46619-induced contractions with an apparent pKB value of 8.27±0.12 (n=4 for each antagonist concentration). GR 32191B (0.3 μM) did not antagonize the contractile responses to PGF and it was a non-surmountable antagonist of PGE2 (apparent pKB of 7.09±0.04; n=5). The EP receptor antagonist AH 6809 at 10 μM shifted to the right the CRC to U-46619 (apparent pKB value of 5.88±0.04; n=4).
  4. Electrical field stimulation (20 Hz, 70 V, pulse width 0.1 ms, trains of 5 s every 60 s) elicited contractions fully sensitive to TTX (0.3 μM) and atropine (1 μM). U-46619 (0.01–3 μM) potentiated the twitch contraction in a dose-dependent manner and this effect was competitively antagonized by GR 32191B with an estimated pKB of 8.54±0.14 (n=4 for each antagonist concentration). PGF in the range 0.01–10 μM (n=7), but not PGE2 and PGE1 (n=3 for each), also potentiated the twitch contraction of detrusor muscle strips (23.5±0.3% of KCl 100 mM-induced contraction) but this potentiation was unaffected by 0.3 μM GR 32191B (n=5).
  5. Cumulative additions of U-46619 (0.01–30 μM) were without effect on contractions induced by direct smooth muscle excitation (20 Hz, 40 V, 6 ms pulse width, trains of 2 s every 60 s, in the presence of TTX 1 μM; n=3). Moreover, pretreatment of the tissue with 0.3 μM U-46619 did not potentiate the smooth muscle response to 7 μM bethanecol (n=2).
  6. We concluded that TXA2 can induce direct contraction of human isolated urinary bladder through the classical TXA2 receptor. Prostanoid receptors, fully activated by PGE2 and PGF are also present. All these receptors are probably located post-junctionally. The rank order of agonist potency and the fact that GR32191B, but not AH6809, antagonized responses to PGE2 seem to indicate the presence of a new EP receptor subtype. Moreover, we suggest the presence of prejuctional TXA2 and FP receptors, potentiating acetylcholine release from cholinergic nerve terminals.
  相似文献   

19.
  1. The effects of adenosine receptor agonists upon phenylephrine-stimulated contractility and [3H]-cyclic adenosine monophosphate ([3H]-cyclic AMP) accumulation in the cauda epididymis of the guinea-pig were investigated. The α1-adrenoceptor agonist, phenylephrine elicited concentration dependent contractile responses from preparations of epididymis. In the absence or presence of the L-type Ca2+ channel blocker, nifedipine (10 μM) the non-selective adenosine receptor agonist, 5′-N-ethylcarboxamido-adenosine (NECA, 1 μM) shifted phenylephrine concentration-response curves to the left (4 and 5 fold respectively). Following the incubation of preparations with pertussis toxin (200 ng ml−1 24 h) NECA shifted phenylephrine concentration-response curves to the right (5.7±0.9 fold).
  2. In the presence of phenylephrine (1 μM), NECA and the A1 adenosine receptor selective agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) elicited concentration-responses dependent contractions from preparations of epididymis (pEC50 values 8.18±0.19, 7.79±0.29 and 8.15±0.43 respectively). The A3 adenosine receptor agonists N6-iodobenzyl-5′-N-methyl-carboxamido adenosine (IBMECA) and N6-2-(4-aminophenyl) ethyladenosine (APNEA) mimicked this effect (but only at concentrations greater than 10 μM). In the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 30 nM) CPA concentration-response curves were shifted, in parallel to the right (apparent pKB 8.75±0.88) and the maximal response to NECA was reduced.
  3. In the presence of DPCPX (100 nM) the adenosine agonist NECA and the A2A adenosine receptor selective agonist, CGS 21680 (2-p-(2-carboxyethyl)-phenethylamino-N-ethylcarboxamido adenosine), but not CPA, inhibited phenylephrine (20 μM) stimulated contractions (pIC50 7.15±0.48). This effect of NECA was blocked by xanthine amine congener (XAC, 1 μM) and the A2A adenosine receptor-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM).
  4. (S)-ENBA (in the absence and presence of ZM 241385, 100 nM), but not NECA or CPA inhibited the forskolin (30 μM)-stimulated accumulation of [3H]-cyclic AMP in preparations of the epididymis of the guinea-pig (by 17±6% of control). In the presence of DPCPX (100 nM) NECA and CGS 21680, but not (S)-ENBA, increased the accumulation of [3H]-cyclic AMP in preparations of epididymis (pEC50 values 5.35±0.35 and 6.42±0.40 respectively), the NECA-induced elevation of [3H]-cyclic AMP was antagonised by XAC (apparent pKB 6.88±0.88) and also by the A2A adenosine receptor antagonist, ZM 241385 (apparent pKB 8.60± 0.76).
  5. These studies are consistent with the action of stable adenosine analogues at post-junctional A1 and A2 adenosine receptors in the epididymis of the guinea-pig. A1 Adenosine receptors potentiate α1-adrenoceptor contractility, an effect blocked by pertussis toxin, but which may not be dependent upon an inhibition of adenylyl cyclase. The epididymis of the guinea-pig also contains A2 adenosine receptors, possibly of the A2A subtype, which both inhibit contractility and also stimulate adenylyl cyclase.
  相似文献   

20.
  1. The endothelin (ET) receptor subtype that mediates niric oxide (NO)-dependent airway relaxation in tracheal tube preparations precontracted with carbachol and pretreated with indomethacin was investigated. The release of NO induced by ET from guinea-pig trachea using a recently developed porphyrinic microsensor was also measured.
  2. ET-1 (1 pM–100 nM) contracted tracheal tube preparations pretreated with the NO-synthase inhibitor, L-NMMA, and relaxed, in an epithelium-dependent manner, preparations pretreated with the inactive enantiomer D-NMMA. The effect of L-NMMA was reversed by L-Arg, but not by D-Arg.
  3. The selective ETB receptor agonists, IRL 1620 or sarafotoxin S6c, both (1 pM–100 nM) contracted tracheal tube preparations in a similar manner either after treatment with D-NMMA or with L-NMMA. In the presence of the ETA receptor antagonist, FR139317 (10 μM), ET-1 administration resulted in a contraction that was similar after either L-NMMA or D-NMMA. In the presence of the ETB receptor antagonist, BQ788 (1 μM), ET-1 relaxed and contracted tracheas pretreated with D-NMMA and L-NMMA, respectively.
  4. Exposure of tracheal segments to ET-1 (1–1000 nM) caused a concentration-dependent increase in NO release that was reduced by L-NMMA. IRL1620 (1 μM) did not cause any significant NO release. FR139317 (10 μM), but not, BQ788 (1 μM), inhibited the NO release induced by ET-1.
  5. These results demonstrate that in the isolated guinea-pig trachea activation of ETB receptors results in a contractile response, whereas activation of ETA receptors cause both a contraction, and an epithelium-dependent relaxation that is mediated by NO release.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号