首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
煤燃烧后排放的硫氧化物导致的环境污染问题已经引起人们的日益关注。基于一段式和两段式卧式炉,本文探究在传统燃烧和解耦燃烧条件下,温度、煤种以及CaO对燃煤释放SO2规律的影响。试验结果表明:不同煤种的SO2释放规律存在差异。随着温度的升高,不同煤种燃烧SO2的释放量均不断增加,硫的动态析出曲线逐渐由单峰分布转化为双峰分布。传统燃烧模式下,添加的CaO对烟煤、无烟煤和褐煤脱硫效率可以达到70%以上,高氯煤脱硫效率则较低,仅有12.09%~20.45%;随温度升高,烟煤、褐煤和高氯煤的脱硫效率呈现先略微下降,后升高再下降的趋势,烟煤脱硫效率则逐渐降低。解耦燃烧模式下,CaO对烟煤、无烟煤脱硫效率在42.35%~76.23%,褐煤在21.35%~52.63%,高氯煤脱硫效率仍然较低,在8.93%~10.57%;随温度升高,烟煤、褐煤和高氯煤的脱硫效率呈现先增加后降低的趋势,烟煤脱硫效率逐渐降低。解耦燃烧模式下,不同煤种SO2的总释放量大于传统燃烧模式,添加CaO后脱硫效率小于传统燃烧模式。  相似文献   

2.
Changes in the macromolecular structure of a lignite and a bituminous coal during rapid pyrolysis in the temperature range 300–1200 K are described. Solvent swelling techniques have clearly demonstrated that crosslinking occurs in lignites at somewhat lower pyrolysis temperatures than it does in bituminous coals. The onset of the crosslinking processes in bituminous coals coincides with the end of the tar formation period. In lignites, crosslinking occurs very early in the pyrolysis process, coinciding with low temperature release of CO2. The presence of natural moisture in the lignite appears to have a significant effect on pyrolysis chemistry, increasing the amount of crosslinking observed at any temperature.  相似文献   

3.
Ambient-pressure thermogravimetric characterization of four different coals and their chars was performed to obtain fundamental information on pyrolysis and coal and char reactivity for these materials. Using a Perkin-Elmer TGS-1 thermobalance, weight loss as a function of temperature was systematically determined for each coal heated in helium at 40 and 160 °C/min under various experimental conditions, and for its derived char heated in air over a temperature range of 20 to 1000 °C. The results indicate that the temperature of maximum rate of devolatilization increases with increasing heating rate for all four coals. However, heating rate does not have a significant effect on the ultimate yield of total volatiles upon heating in helium to 1000 °C; furthermore, coupled with previous data9 for identical coal samples, this conclusion extends over a wide range of heating rate from 0.7 to 1.5 × 104 °C/s. Using the temperature of maximum rate of devolatilization as an indication of relative reactivity, the devolatilization reactivity differences among the four coals tested that were suggested by this criterion are not large. For combustion in air, the overall coal/char reactivity sequence as determined by comparison of sample ignition temperature is: N. Dakota lignite coal ≈ Montana lignite coal > North Dakota lignite char > III. No. 6 bituminous coal ≈ Pittsburgh Seam bituminous coal > Montana lignite char > III. No. 6 bituminous char > Pittsburgh Seam bituminous char. The reactivity differences are significantly larger than those for devolatilization. The reactivity results obtained suggest that coal type appears to be the most important determinant of coal and char reactivity in air. The weight loss data were fitted to a distributed-activation-energy model for coal pyrolysis; the kinetic parameters so computed are consistent with the view that coal pyrolysis involves numerous parallel first-order organic decomposition reactions.  相似文献   

4.
Yasuhiro Takemura  Koji Ouchi 《Fuel》1983,62(10):1133-1137
In a batch-autoclave, twenty coals were liquefied using a cobalt-molybdenum oxide catalyst with a mixture of CO and H20 at 400 °C with or without vehicle oil. Furthermore, lignite and peat were liquefied on tungsten oxide catalyst at 300 °C in the absence of CO. The reactivity of coal in this liquefaction is found to depend strongly on its rank. The vehicle oil significantly influences the extent of the water-gas shift reaction, especially when bituminous coals are liquefied, by dissolving such coals. Liquefaction of coal by this process is considered to take place via three routes: hydrogenolysis by the nascent hydrogen produced from the shift reaction; dissolution of coal into the vehicle oil which is an initial stage of hydrogenolysis; and a solvolytic reaction with H2O, such as hydrolysis.  相似文献   

5.
Three types of pulverized coal were burned in a laboratory furnace under various combustion configurations. Pulverized samples of Utah bituminous, Beulah (North Dakota) lignite, and Texas lignite coals were burned at a rate of 2.5 kg/hr in a laboratory furnace. Aerosol size distributions were measured at various positions within the convection section, and temperature and gas compositions were measured throughout. The evolution of the submicron particle size distribution within the convection section for the three coals was similar, although the location of the initial particle mode at the convection section inlet varied with coal type. While staged combustion of Utah bituminous coal had a variable effect on the volume of submicron aerosol produced, staged combustion of the lignites caused a definite increase in the submicron aerosol volume. Vapor enhancement due to a localized reducing atmosphere, which would effect coals of higher ash volatility, is thought to explain this behavior.  相似文献   

6.
The vapor pressure of iodine over mixtures of iodine and various coals has been measured at temperatures of 65–95°C. Lignite and bituminous coals exhibit similar behavior in their absorption of iodine whereas the behavior of anthracite coal is different. A region of constant vapor pressure occurs in the reaction between iodine and the bituminous coals and lignite. Complex formation between the iodine and coal is postulated.  相似文献   

7.
富氧条件下煤粉气流的着火性能变化   总被引:2,自引:2,他引:0       下载免费PDF全文
刘国伟  董芃  别如山 《化工学报》2013,64(7):2596-2603
利用一维火焰炉对不同富氧条件下的煤粉气流着火燃烧特性进行了研究,得到了富氧条件下煤粉气流的着火性能变化规律。研究结果表明:随着助燃气体氧浓度的提高,各煤样的着火温度均大幅下降,其中低挥发分煤种在着火方面对富氧条件的改善更为敏感,即富氧条件的改善可减弱煤种间着火性能方面的差异性;随着氧浓度的提高,煤粉气流的着火方式明显从均相着火向非均相着火转变,其中燃用褐煤时发生着火方式转变所对应的氧浓度为50%~60%,燃用烟煤时约为40%,燃用贫煤和无烟煤时都约为30%;对于烟煤和褐煤,随着氧浓度的提高,对应的最佳煤粉浓度值先增大后减小,而对于贫煤和无烟煤,由于其在整个实验氧浓度范围内基本上都以"非均相着火"为主,因此随着氧浓度的提高,对应的最佳煤粉浓度的值基本上呈缓慢下降的趋势。  相似文献   

8.
For the foreseeable future, coal and petroleum‐based materials, such as petroleum Coke, residuals, and high‐sulphur fuel oil, are being adopted as the feedstocks of choice for gasification projects. Of particular interest from a Canadian perspective is Coke generated from the thermal cracking of the oil sands in Western Canada. Oil sand Coke contains high sulphur (5–6%), and also typically has a low volatile content, and lower reactivity than most coals. Experimental runs have recently been conducted on the pilot‐scale entrained‐flow gasifier at CETC‐Ottawa, blending oil sand Coke with sub‐bituminous and lignite coals, to try and enhance the gasification potential of these materials. Blending Genesee sub‐bituminous coal with the delayed oil sands Coke was found to alleviate problems encountered with slag plugging the reactor when running with Genesee coal alone. Blends of Genesee sub‐bituminous and Boundary Dam lignite coals with Coke achieved higher carbon conversions and cold gas efficiencies than runs completed with the Coke by itself. While using CO2 as the conveying gas into the gasifier was not found to significantly affect the conversion obtained, steam addition was found to have a marked effect on CO and H2 concentrations in the syngas.  相似文献   

9.
高砷褐煤与低砷烟煤混燃砷的挥发特性及模型   总被引:1,自引:1,他引:0       下载免费PDF全文
选取典型的高砷褐煤和低砷烟煤,在一维等温燃烧实验台上进行混燃实验,研究温度(600~1100℃)和掺混比(3:1、1:1、1:3)对高砷褐煤混燃砷挥发的影响。实验结果表明:随着温度的升高,单煤及混煤燃烧砷的挥发比例逐渐增大,不同温度下混煤燃烧砷的挥发比例介于两个单煤之间,但砷的挥发比例并不是简单的加权平均,不同温度和掺混比下混煤砷的挥发比例均高于加权值,高砷褐煤中较高的挥发分含量在影响混煤焦炭燃烧的同时也促进了混煤中砷的挥发。因此,提出了综合考虑温度、掺混比和高砷褐煤影响的混煤砷挥发模型,不同温度和掺混比下的模型计算结果与实验值吻合度较好。  相似文献   

10.
Masaharu Nishioka 《Fuel》1993,72(12):1725-1731
Initial volumetric swelling in tetrahydrofuran of pyridine-unextracted parts from subbituminous coal and lignite showed no dependence of their concentration, and was smaller than that of their pyridine extracts. These results are opposite to those obtained from high volatile bituminous coals and coincide with predictions for the cross-linked network model of coal. However, when ionic forces in these coals were reduced by acid washing or O-alkylation, these coals showed the same associative nature as did high volatile bituminous coals. Swelling kinetics were analysed on the basis of associative equilibria controlled by the ionic forces. It was concluded that solvation of the ionic forces was the rate determining step of volumetric swelling of lower rank coal rather than solvent diffusion into the coal, although diffusion has been proposed to be the most important factor in swelling.  相似文献   

11.
The fine-scale mineral matter in three US coals has been analysed via scanning transmission electron microscopy (STEM). The samples observed were a North Dakota lignite, a Kentucky bituminous, and a Pennsylvania semi-anthracite. Specific mineral types, differing among the three coals examined, appear to predominate at this fine size scale (particles ? 200 nm in diameter). Fe-rich and Ba-rich minerals in the lignite, a Ti-rich mineral in the bituminous and Ca-rich and Ti-rich minerals in the semianthracite were the predominant species found. The inherent mineral content in the observed organic background also differed from coal to coal. The distributions of mineral species in the size range ? 200 nm reported herein do not reflect the distributions in the larger size ranges obtained by more macroscopic techniques.  相似文献   

12.
Pyrolysis—gas chromatography (Py—g.c.) was used to characterize quantitatively a series of high- to low-volatile bituminous Permian Australian coals. The levels of n-alkanes, n-alkenes and triterpenoids released by pyrolysis all decrease as a function of increasing rank and thus, the coal samples can be classified into three distinct groups. Carbon Preference Indices (CPI's) for alkanes and alkene/alkane ratios also decrease as a function of rank. The triterpenoids have exclusively the hopane skeleton. The hopane isomeric distributions exemplify the geological maturity of bituminous coals relative to brown coal (lignite). A significant correlation has been established between the level of n-alkanes and n-alkenes released under Py-g.c. conditions and the predicted oil yield by pyrolysis of these coals. Further development and application of the techniqueshould enable much to be learnt relating to the quality and yield of flash pyrolysis tars as well as the original coal macromolecular structure.  相似文献   

13.
Some insight into the chemical nature of coals and the coalification process was obtained by detailed analyses of the organic constituents of three coals — a lignite, a bituminous, and an anthracite coal. Organic compounds trapped in the coal matrix, residuals and products of the original coalification process, were isolated by vacuum distillation and solvent extraction. The macromolecular material which constitutes the bulk of coals was degraded by a series of selective oxidations to smaller units which could be identified and measured. The essential aromatic character of coals was demonstrated, with condensation of aromatic rings increasing with increasing rank.  相似文献   

14.
Several inorganic reducing agents of various chemical characteristics have been tested to see if they reduce the oxygen contained in coal. It was found that oxygen content of coals decreased when they were heated in only water (blank runs). The treatment with the reducing agents containing sulphur did not increase the oxygen removal over that achieved in the blank runs. However, it appears that the ferrous salt catalytically deoxygenated both the lignite and bituminous coals.  相似文献   

15.
The dissolution of Wyodak subbituminous and North Dakota lignite coals in 50% aqueous sodium hydroxide was enhanced by the addition of sulfur. The added sulfur was not incorporated into the undissolved coal residues. The effects of temperature (140–200°C), time (5–90 min), and added elemental sulfur (1–25% by weight) on dissolution were examined. Temperature affected the dissolution of subbituminous and lignite coal, while time affected the dissolution of subbituminous coal.  相似文献   

16.
The reactivity of lignite and different ranks of coal with sulphur dioxide has been investigated in a corrosive-gas, thermogravimetric reactor system. With all coals, the reaction occurred in two distinct stages. A rapid initial stage was controlled primarily by the devolatilization rate of the coal. The second stage limited the overall rate and was controlled by surface properties of the coal char. The portion of lignite associated with the second stage of reaction exhibited a much higher rate of SO2 reduction than the corresponding material from all other coals. Correlation of the data showed an inverse relation between the reactivity of coal chars and the relative rank of the parent coal. Activation energies associated with the reduction of SO2 by the coal chars increased slightly from 134 kJ mol?1 for lignite char to 150 kJ mol?1 for HVB bituminous coal char. The higher reactivity of lignite or lower-rank coals was due in part to entropy factors or available catalytic sites on the surface of coal. Formation of a thermally stable CS complex on the surface of coal appeared to poison the surface and thus limit further reaction. Alkali and alkaline earth metals in lignite served as active sites for catalysing the reaction of SO2 with the CS complex and thus enhanced the rate of SO2 reduction with lignite.  相似文献   

17.
The methods of reduction and reductive alkylation with potassium in tetrahydrofuran and sodium in liquid ammonia have been applied to sulphur-rich, highly fluid (in carbonization) Ra?a lignite. The results indicate that solubilization of coal by alkylation of the coal anion formed in liquid ammonia is a clean and defined process. It is concluded that the highly thermoplastic properties of Ra?a coal result mainly from cleavage of CSC(COC) bridges, low contents of OH and lack of SH groups. In contrast to ‘normal’ bituminous coals investigated until now and characterized by wide distribution of the molecular weight of clusters formed on cleavage of ether bridges, about 80% (w/w) of Ra?a lignite is built of units of almost uniform molecular weight (MW 500).  相似文献   

18.
Tween 80 (polyoxyethylene sorbitan monooleate), Triton X-100 (nonaethylene glycol octylphenol ether), and SDS (sodium dodecyl sulfate) solubilized several components of Mississippi Wilcox lignite and Illinois No. 6 bituminous coal. Tween 80 extraction of alkali-soluble Ugljevik lignite resulted in an increase in hydrogen content and decreases in the nitrogen and sulfur contents of undissolved coal solids. Biosurfactant-containing cell-free extracts of Bacillus licheniformis solubilized a 53 000 Da coal component of Mississippi Wilcox lignite. The results suggest that solubilization of coal organic components by chemically- and biologically-synthesized surfactants has potential in terms of upgrading coals.  相似文献   

19.
Chee Keung Chow 《Fuel》1983,62(3):317-322
A hvA bituminous, a subbituminous and a lignite coal have been hydrolysed by 20–30% aqueous caustic solution at 100–300 °C and total pressure from ambient to 8.3 MPa (1200 psi). Reactivity of these pretreated coals toward liquefaction has been examined. The conversion to benzene-soluble material (BS) and oil increases, and the preasphaltene and char residue decreases after pretreatment. Improvement in the conversion to the BS fraction is only marginal for the pretreated bituminous coal, but substantial for the low-rank coals. For the subbituminous coal, the liquefaction reactivity (conversion to BS) increases with the severity of hydrolysis pretreatment. Analyses of chemical compositions, 1H n.m.r. nuclei distributions and hydroxyl concentrations of the acid-insoluble hydrolysis coal extracts indicate that both O and S are enriched in the extracts with half of the oxygen atoms being in hydroxyl forms. The hydroxyl concentrations of the extracts (acid-insoluble) are ≈2 to 3 times higher than their parent coals. Coal activation by this alkali pretreatment is explained by the hydrolytic attacks on ether C–O linkages, and the removal of some constituents rich in oxygen functional groups which are responsible for poor liquefaction behaviour.  相似文献   

20.
Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号