首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
THE PRESENT STATUS OF ZIRCON   总被引:1,自引:0,他引:1  
Saxena (1966a) proposed that zircon could be authigenic and low-grade metamorphic, as well as magmatic in origin. He questioned the mechanical and chemical stability of zircon, the use of crystal morphology in correlation, and the use of roundness as a criterion of detrital origin. In so doing, he challenged the role of zircon in problems of stratigraphy, pedogenesis, and sedimentary, igneous, and metamorphic petrology. SAXENA'S(1966a, b) evidence for authigenic and low-grade metamorphic zircon is unconvincing, since conventional explanations adequately encompass his obser- vations, and do not conflict with established knowledge of zircon behaviour. During weathering, authigenesis, and metamorphism, zircon is shown to conform with the concepts that: (1) its removal and transport in solution is minimal, (2) zircon formation during authigenesis and low-grade metamorphism is insignificant. Rare occurrences of hydrozircon confirm this paucity of authigenic zirconium minerals. At high metamorphic grades zircon-transformation is favoured by the “wet” metasomatic processes of the amphibolite facies and impaired by the “dryness” of the granulite facies. The occurrence of zircon transformation in the granulite facies may also be prevented by incorporation of zirconium in the lattice of newly-formed pyroxene. Release of this zirconium during diaphthoresis of pyroxene-bearing granulites could give rise to new zircon. The formation of zircon during authigenesis, and its formation and transfor- mation during low-grade metamorphism, would diversify initially homogeneous assemblages; but Saxena has failed to prove that either process does in fact occur. It is contended that, since the positive correlation of zircon assemblages from co-eval sedimentary and metamorphic rocks of the Kingsbridge area is opposed to Saxena's views regarding the origin and behaviour of zircon, the roles of authigenesis in the formation of zircon, and of low-grade metamorphism in its formation and transformation, are insignificant or non-existent.  相似文献   

2.
EVOLUTION OF ZIRCONS IN SEDIMENTARY AND METAMORPHIC ROCKS   总被引:2,自引:0,他引:2  
Zircons have been studied in the sedimentary rocks of the Sparagmite Group (Eocambrian) and their metamorphic associates from the Trondheim area and the adjacent regions in Norway and Sweden. The majority of zircon population (type B) has been formed in the sediments by authigenesis. Another authigenic associate is rutile. The authigenic zircons have irregular, round and ellipsoidal habits. In metamorphic rocks the same grains show a greater tendency of euhedrism, forming drum-like crystals with acute (331) pyramids and short prisms. Authigenic zircons are usually clear and transparent but some grains may show cloudy appearance. A few other grains (type A) with different habit and many inclusions appear to be of detritai nature. Dissolution of a metamictized zircon population in the source rock is possible in many ways. An important possibility is the dissolution of zircons in alkaline solution. Carbonated lime-rich waters or other acidic solutions could be equally effective. Zirconates, so formed, are transported to the basin of deposition as colloidal particles or as ionic complexes. The authigenic process is visualized as a deposition of the zirconates by adsorption or by precipitation as zirconium hydroxide, possibly due to change in the Eh and pH in the environment. The hydrated oxide subsequently reacts with silica to form metastable hydrozircon. In course of time hydrozircon dehydrates and becomes a normal zircon. Numerous growths have been noted and are classified genetically into (l) late authigenic growths, and (2) growths syngenetic with metamorphism. The shape of the host grain usually controls the final shape of the overgrown grain. There is some effect of metamorphism on the morphology of the authigenic zircons. In view of the characters of the newly generated zircons, the use of shape, size, zoning and such other parameters of zircons in petrogenetic problems, has to be retested to ensure its reliability. Rather than being a mineral of igneous derivation only, zircon is from three parentages: igneous, authigenic and metamorphic. It is argued that the persistence of the authigenic zircons should be greatest because of very low concentration of radioactive elements.  相似文献   

3.
冀西北怀安地体高级变质表壳岩的锆石年代学研究   总被引:4,自引:3,他引:1  
蔡佳  刘平华  冀磊  施建荣 《岩石学报》2017,33(9):2811-2826
位于华北克拉通中部造山带中北段的怀安地体与内蒙孔兹岩带相接,出露高压麻粒岩和退变榴辉岩等多种高级变质岩,是洞悉华北克拉通古元古代构造演化历史的重要窗口。研究区变质表壳岩包括夕线石榴长英质片麻岩、石榴长英质粒状岩石以及紫苏黑云二长片麻岩。阴极发光图像特征显示研究区样品的锆石主要包括碎屑锆石和变质锆石,其中碎屑锆石具有岩浆结晶环带,而变质锆石为单颗粒或围绕着继承性碎屑锆石边部生长,内部结构均匀,Th/U比值较低。锆石LAICP-MS U-Pb定年结果与前人研究结果综合表明该区变质表壳岩石的碎屑锆石的207Pb/206Pb年龄主要集中在~2040Ma,其原岩形成时代与孔兹岩带变泥质岩石相近,均为~2.0Ga。变质锆石记录其变质时代为1957~1804Ma,结合前人对怀安地区变泥质岩和变基性岩变质作用和年代学研究结果,推测得出1.95~1.92Ga代表了峰期(高压)麻粒岩相变质时代,1.90~1.85Ga代表峰后减压阶段变质时代,而1.85~1.80Ga代表退变质晚期的时代。怀安地区变质岩石可能卷入了阴山陆块、鄂尔多斯陆块以及东部陆块间的先后碰撞造山过程,并持续较长时间(1.95~1.80Ga),最终拼贴为统一的整体。  相似文献   

4.
The evolution of the provenance areas for Late Neoproterozoic, Cambrian and Early Ordovician sedimentary and meta-sedimentary rocks of north central and northwest Argentina is discussed using 123 maximum ages of detrital zircons from 42 samples from this and previously published studies. Most detrital zircon ages fall into two groups: 1,200–900 Ma and 670–545 Ma. These ages are essentially identical for the non- to very low grade metamorphic late Neoproterozoic to Early Cambrian Puncoviscana Formation and the low to high grade metamorphic rocks of Eastern Sierras Pampeanas. Hence, both units are related to similar provenance areas at the same time of sedimentation. The time span from zircon crystallization in the Earth’s crust to exhumation and erosion may be very long. This is important when determining maximum ages of sedimentary rocks. Variation of zircon maxima may also be influenced by concurrent sedimentary cover of proposed provenance areas. For the late Mesoproterozoic to early Neoproterozoic zircon age group, an active mountain range of the southwest Brazilian Sunsás orogen is the most probable provenance area. The younger, late Neoproterozoic zircons are related to the continuously developing mountains of the Brasiliano orogen of southwest and south central Brazil. Young zircons, up to 514 Ma, from fossil-bearing Puncoviscana and Suncho Formation outcrops are related to late Early Cambrian volcanism contemporaneous with sedimentation. This situation continues through the Late Cambrian to the Early Ordovician, but the Sunsás orogen provenance diminishes as possible Río de la Plata craton origins become important.  相似文献   

5.
黑龙江西部龙江地区位于中亚造山带东段,黑河-贺根山缝合带与西拉木伦缝合带之间,地层记录了两大古板块之间古亚洲洋闭合过程的信息。本文对龙江地区乐平统林西组和下-中三叠统老龙头组的砂岩样品进行碎屑重矿物和碎屑锆石U-Pb同位素年代学研究。碎屑重矿物组合以锆石+磷灰石+金红石+角闪石+绿帘石+重晶石的组合为特征,表明物源主要来自于中酸性岩浆岩,并有少量变质岩及沉积岩组分。林西组样品最年轻的锆石年龄为278±3Ma,老龙头组样品最年轻的锆石年龄为247±3Ma、243±4Ma及237±3Ma,结合前人的研究,限定了林西组沉积于乐平世,老龙头组沉积于早三叠世-中三叠世。碎屑锆石年龄谱明显分为五组:237~258Ma、270~329Ma、357~558Ma、680~1633Ma及1893~1966Ma。其中237~258Ma的碎屑锆石主要来自与古亚洲洋洋壳消亡前的俯冲增生过程相关的火山活动,270~329Ma的碎屑锆石主要来自大石寨组火山岩及其同期侵入岩,357~558Ma的碎屑锆石来自早古生代-晚古生代早期岩浆弧,680~1633Ma的碎屑锆石可能来自兴安及额尔古纳地块的变质基底,而较古老的~1800Ma的锆石年龄暗示了华北克拉通基底的物源信息。通过研究发现林西组及老龙头组样品前30%年轻的碎屑锆石年龄与地层沉积年龄之差都小于100Ma,结合对砂岩碎屑组成、重矿物组合及盆地与火山弧位置关系的研究,认为研究区乐平世-中三叠世沉积盆地具有汇聚背景,为弧前盆地。  相似文献   

6.
对大别山黄土岭麻粒岩中的锆石进行了LA-ICPMS微区微量元素分析.结果表明,黄土岭麻粒岩中锆石的不同区域有不同的微量元素组成,麻粒岩相变质锆石的大多数微量元素含量明显低于岩浆锆石,表明麻粒岩相变质条件下形成的锆石具有较低的微量元素组成.锆石及其共生矿物的微量元素分析结果表明,该麻粒岩中变质锆石Eu负异常是变质锆石形成时长石稳定存在的结果.锆石与石榴子石之间微量元素分配特点表明,变质锆石与石榴子石之间到达了平衡.这些结果表明,该样品的变质锆石形成于麻粒岩相峰期变质阶段,这些变质锆石区域测定的年龄结果对应于麻粒岩相峰期变质作用时间.锆石和共生矿物的微量元素分析对锆石的成因及得到的年龄的解释具有重要的指示意义.锆石与石榴子石之间微量元素的分配特征,不但可以指示锆石与石榴子石之间是否达到平衡,而且可以通过石榴子石这一"桥梁",为锆石的U-Pb年龄提供合理的p-T条件限定.  相似文献   

7.
蔡佳  刘福来  刘平华  王舫  施建荣 《岩石学报》2015,31(10):3081-3106
乌拉山-大青山孔兹岩系岩石出露于华北克拉通孔兹岩带中段,是洞悉华北克拉通前寒武纪基底构造演化历史的一个重要窗口。研究区孔兹岩系岩石包括堇青石榴黑云二长片麻岩、夕线堇青石榴黑云二长片麻岩、紫苏石榴黑云片麻岩和石榴长英质粒状岩石,系统的岩相学观察显示多种典型的减压反应结构。阴极发光图像特征显示乌拉山-大青山孔兹岩系岩石均存在大量继承性碎屑锆石和变质增生锆石,其中继承性碎屑锆石形态复杂,多显示典型岩浆结晶环带,标志着源区物质主要来源于岩浆岩。变质锆石为新生的单颗粒或围绕着继承性碎屑锆石核生长,内部结构均匀,整体的Th/U比值较低。锆石LA-ICP-MS U-Pb定年结果表明,该区孔兹岩系岩石的继承性碎屑锆石的207Pb/206Pb年龄主要集中在2400~2500Ma、~2300Ma和2000~2100Ma,进而可限定其最老沉积时代应为~2000Ma,表明乌拉山-大青山孔兹岩系的原岩形成时代为古元古代中期。乌拉山-大青山孔兹岩系中典型的变质锆石记录其变质时代为1850~1950Ma,并显示~1950Ma和~1860Ma两组年龄峰。结合前人对内蒙古孔兹岩带乌拉山-大青山地区高级变质地体的变质作用、构造演化和同位素年代学的研究结果,综合判断该期变质事件与古元古代华北克拉通西部陆块内北部的阴山陆块和南部的鄂尔多斯陆块之间的俯冲-碰撞并折返抬升至地表的动力学过程有关,其中~1950Ma代表了陆-陆碰撞形成孔兹岩带的初始阶段,而~1860Ma则代表了其折返抬升的时代。  相似文献   

8.
针对中浅变质沉凝灰岩锆石U-Pb同位素年龄分散幅度较大的现状,在湘中地区碧溪长安组底部凝灰岩几次采集样品测年不成功的情况下再次取样,通过室内重砂样品加工分选等工序,利用立体显微镜和偏光显微镜对锆石进行详细的矿物学特征对比分析,确定样品是否有来自不同时代、不同成因或不同地质背景的锆石。将精选出的锆石进行再次分选,分离成两组样品送往测年,采用LA-ICP-MSU-Pb法测得同沉积期的火山岩岩浆成因锆石年龄751±5 Ma和构造岩浆热事件年龄431.3±4.3 Ma,两组年龄数据与区域地质事实吻合。由此认为对此类样品的锆石进行成因、形态与光学性质等方面的综合分析研究,将混合锆石进行分组,有助于同位素测年数据的有效集中,保证测年数据精度。本文研究表明重砂精细分析鉴定是同位素精准定年的基础。  相似文献   

9.
董永胜  李才  陈辉  陈文  张彦 《岩石学报》2011,27(4):1198-1208
青藏高原冈底斯地块东南部的德玛拉岩群为一套角闪岩相变质岩系,一直被认为是前寒武纪变质基底,但并没有可靠的年代学证据。论文对采自其中的黑云角闪片岩和黑云母石英片岩进行了锆石LA-ICP-MS U-Pb定年和黑云母39Ar-40Ar定年,测试表明,黑云角闪片岩原岩锆石U-Pb年龄为217.1Ma,由黑云母39Ar-40Ar获得的变质年龄为22.3Ma,黑云母石英片岩中碎屑锆石主要为岩浆成因,年龄范围主要集中在520~600Ma和900~1100Ma,黑云母39Ar-40Ar变质年龄为16.3Ma和22.3Ma。上述结果虽不能完全否定西藏东南部察隅地区前寒武纪基底变质岩系的存在,但至少说明现今的德玛拉岩群中还包含有遭受中生代岩浆侵入的古生代沉积岩,它们在新生代经历了变质和岩浆作用的再造,是一套变质杂岩。  相似文献   

10.
S. K. SAXENA 《Sedimentology》1968,10(2):145-146
In a discussion Kalsbeek (1967) suggests that my idea of an authigenic origin of zircons seems to be the result of mis-identification of authigenic titaniferous minerals as zircon. Kalsbeek appears to have formed this opinion firstly because he sees all the crystals (Saxena , 1966a, plate IV) as zircons. I never mentioned this. Since 70% of the matrix in the sandstones consists of such aggregate, the very idea of having so much zircon in the rock would be fantastic and absurd.  相似文献   

11.
对胶东谭格庄地区一地质剖面进行了详细野外观察和锆石SHRIMP年代学研究.剖面主要是由奥长花岗质片麻岩和斜长角闪岩组成,两者互层产出并一起发生褶皱变形,在强变形域两者完全平行化.所以,在强变形地区,不同成分岩性的薄层状互层产出不能作为变质沉积岩的识别标志.奥长花岗质片麻岩(S1105)形成于2496±10Ma,遭受了古元古代早期和晚期变质.两个斜长角闪岩样品(S1238和S0812)都只发育变质锆石,年龄分别为1842±3Ma和1833±13Ma.该剖面岩石记录的两期变质作用在胶东地区具有普遍意义.结合前人研究,作者指出该地区太古宙末存在区域性变质深熔作用,早期地壳受到了强烈的再造;古元古代末的变质作用具有带状分布特点,与造山作用有关.  相似文献   

12.
SHRIMP U–Pb zircon ages are reported from a paragneiss, a pegmatite, a metasomatised metasediment and an amphibolite taken from the upper amphibolite facies host sequence of the Cannington Ag–Pb–Zn deposit at the southeastern margin of the Proterozoic Mt Isa Block. Also reported are ages from a middle amphibolite‐facies metasediment from the Soldiers Cap Group approximately 90 km north of Cannington. The predominantly metasedimentary host rocks of the Cannington deposit were eroded from a terrane containing latest Archaean to earliest Palaeoproterozoic (ca 2600–2300 Ma) and Palaeoproterozoic (ca 1750–1700 Ma) zircon. The ca 1750–1700 Ma group of zircons are consistent with sedimentary provenance from rocks of Cover Sequence 2 age that are now exposed to the north and west of the Cannington deposit. The metasedimentary samples also include a group of zircon grains at ca 1675 Ma, which we interpret as the maximum depositional age of the sedimentary protolith. This is comparable to the maximum depositional age of the metasediment from the Maronan area (ca 1665 Ma) and to previously published data from the Soldiers Cap Group. Metamorphic zircon rims and new zircon grains grew at 1600–1580 Ma during upper amphibolite‐facies metamorphism in metasedimentary and mafic magmatic rocks. Zircon inheritance patterns suggest that sheet‐like pegmatitic intrusions were most likely derived from partial melting of the surrounding metasediments during this period of metamorphism. Some zircon grains from the amphibolite have a morphology consistent with partially recrystallised igneous grains and have apparent ages close to the metamorphic age, although it is not clear whether these represent metamorphic resetting or crystallisation of the magmatic protolith. Pb‐loss during syn‐ to post‐metamorphic metasomatism resulted in partial resetting of zircons from the metasomatised metasediment.  相似文献   

13.
In north-eastern Greece the mid-greenschist facies Makri Unit and the anchizonal Melia Formation belong to the eastern Circum-Rhodope Belt that forms the uppermost tectonostratigraphic unit of the Rhodope metamorphic nappe pile. The two metasedimentary successions had different source areas, although they now lie in close proximity in the Rhodope Massif. The U-Pb isotopic ages of detrital zircons from a metasandstone of the Makri Unit analysed using LA-SF-ICP-MS and SHRIMP-II gave age clusters at ca. 310-290 Ma and at ca. 240 Ma for magmatic zircons, which may have been derived from Carboniferous-Permian basement rocks of the Thracia Terrane (Lower Tectonic Unit of the Rhodope Massif) that subsequently underwent Triassic rifting. The youngest detrital zircon grains found so far indicate that the metasedimentary succession of the Makri Unit, or at least parts of it, cannot be older than Late Triassic. By contrast, clastic sedimentary rocks of the Melia Formation contain the primary detrital mineral assemblage of epidote, zoisite, garnet, and phengitic mica, which is absent in the Makri Unit, and clearly points to metamorphic rocks being the major source for these sediments. U-Pb analyses of detrital zircons gave a prominent age cluster at ca. 315-285 Ma for magmatic zircons. Inherited cores indicate the involvement of Pan-African and Late Ordovician-Early Silurian crustal sources during Late Carboniferous-Early Permian igneous event(s). Moreover, U-Pb detrital zircon geochronology indicates that the Melia Formation cannot be older than latest Middle Jurassic. We suggest that the Melia Formation was deposited in front of a metamorphic nappe pile with Rhodopean affinities in Tithonian or Cretaceous times. Both the Makri Unit and the Melia Formation have been tectonically juxtaposed from different sources to their present location during Balkan and Alpine orogenic processes.  相似文献   

14.
通过1︰5万地质填图及剖面测制,作者在粤北大瑶山地区的震旦-寒武纪地层中首次发现多层火山岩,岩性主要为火山-沉积碎屑岩类的变质凝灰质不等粒岩屑石英砂岩、变质凝灰质不等粒长石石英砂岩、沉凝灰岩等,局部见变流纹质熔结凝灰岩。对变流纹质熔结凝灰岩、变质凝灰质砂岩用LA-ICP-MS法测定锆石U-Pb年龄,206Pb/238U年龄介于614~2869 Ma之间,年龄值较为分散,说明碎屑锆石是多来源的。火山岩年龄数据与地层时代归属矛盾,粤北大瑶山地区前泥盆纪地层的时代归属值得进一步探讨。  相似文献   

15.
近年来,锆石的晶体形态、内部结构、年龄和Hf-O同位素分析已经成为盆地沉积物源区示踪的重要探针。渣尔泰群和白云鄂博群中碎屑锆石年龄主要集中在新太古代末期(~2.50 Ga)与古元古代末期(~1.90 Ga)两组,这两组碎屑锆石的相对丰度在层序上出现“振荡性”变化,这种变化特征与经典的源汇系统中构造—沉积响应的年代记录明显不一致。为研究渣尔泰群、白云鄂博群沉积层序中碎屑锆石年龄分布特征与源区构造演化之间的关系。本文系统总结了区域内大量相关的锆石U-Pb年龄数据,同时对渣尔泰群书记沟组和增隆昌组进行碎屑锆石LA-ICP-MS U-Pb年代学研究。研究表明这两组年龄与南部大青山—乌拉山造山带中基底岩石记录的构造热事件年龄相一致,同时根据锆石结构特征认为~2.50 Ga的锆石来源于造山带内新太古代岩浆—变质地体,~1.90 Ga的锆石来源于高级变质—深熔地体。大青山—乌拉山造山带与这套中-新元古代沉积地层构成源汇系统。源区造山带下地壳新太古代与古元古代变质岩系近水平互层叠置是大青山—乌拉山造山带下地壳结构的基本特征,岩性变化率在垂向上远大于水平方向,是控制盆地中碎屑锆石组合变化的直接原因。  相似文献   

16.
The interpretation of whether a dated metamorphic zircon generation grew during the prograde, peak or retrograde stage of a metamorphic cycle is critical to geological interpretation. This study documents a case at Aktyuz metamorphic terrain, in the southern of Kokchetav‐North Tianshan belt, involving progressive metamorphic recrystallization of mafic rock to eclogite and associated behavior of zircon. Zircons in eclogites are mainly fine grains (5 to 20 μm), and preferentially concentrated with rutile/ilmenite. They also occur as individual grains or clusters in amphibole coronas of garnet. A few larger grains commonly preserve inherited cores and evidence of dissolution and metamorphic outgrowths. Zircon grains separated from amphibolites show inherited zircons with typically magmatic feature, although this become progressively blurred in response to resorption and recrystallization. Mineral inclusions represent epidote‐amphibolite facies in the prograde metamorphism, and the embayed boundary between recrystallized domains and inherited zircons suggest fluid/melt participation. The metamorphic domains are mainly simple overgrowth around the inherited cores or recrystallization domains. The absence of peak metamorphic mineral inclusions and steep pattern of MREE‐HREE indicate no sufficient garnet formed before the metamorphic zircon overgrowth. A tiny rim with homogeneously bright CL image can be distinguished in most zircons. Amphibole inclusions have similar compositions to those in the coronas of garnets, suggesting a retrograde metamorphic origin. The inherited zircon crystallized at 880‐730 Ma, revealing similar age range to the gneiss in Aktyuz area, whereas metamorphic zircon dates prograde metamorphism at 497.9 ±1.4 Ma. In this case, the bulk Zr budget in rocks will become locked into Zr‐bearing minerals during the mafic magma intrusion, when the inherited zircon melting and resorption. The texture shows that metamorphic zircon grew both in the prograde and retrograde stage, and Zr‐bearing magmatic minerals and rutile/ilmenite are by far the main source of Zr for the two stages, respectively.  相似文献   

17.
刘平华  邹雷  田忠华  冀磊  施建荣 《地球科学》2019,44(7):2441-2460
前寒武纪变沉积岩系是阿拉善地块重要组成部分,准确测定其原岩成岩时代和变质时代,对于进一步认识阿拉善地块起源、形成、演化与亲缘性具有十分重要的科学意义.本文对阿拉善地块东部阿拉坦敖包地区德尔和通特组含蓝晶石石榴云母石英片岩开展了系统的野外地质调查、岩相学观察和同位素年代学研究.碎屑锆石U-Pb定年和野外地质调查表明,阿拉坦敖包地区德尔和通特组和祖宗毛道组碎屑锆石年龄介于3 306~1 146 Ma,并以出现中元古代锆石年龄(1 800~1 100 Ma)高频区为特征,最小一组碎屑锆石年龄约为1 123 Ma,结合区域上它们被约900 Ma花岗质片麻岩侵入的野外关系,阿拉坦敖包地区德尔和通特组与祖宗毛道组变沉积岩系的沉积时代被限定在1 123~900 Ma之间,为一套中元古代晚期?新元古代早期陆缘沉积建造,具有亲华北板块的特点.此外,变质独居石和变质锆石U-Pb定年和微量元素分析表明,阿拉坦敖包地区德尔和通特组含蓝晶石泥质片岩中发育大量变质独居石,它们具有典型变质独居石的稀土元素配分模式(轻稀土元素强烈富集而重稀土元素强烈亏损),其加权平均年龄为419±3 Ma(MSWD=7.1,n=40),类似地,一个锆石变质边也记录了406±7 Ma的206Pb/238U年龄.这些变质年龄被解释为阿拉善地块东部阿拉坦敖包地区德尔和通特组含蓝晶石石榴云母石英片岩遭受早古生代末角闪岩相变质?变形作用的时代,可能是阿拉善地块与周缘微陆块早古生代末碰撞造山作用的响应.   相似文献   

18.
ABSTRACT

U-Pb detrital zircon age patterns are presented for nine samples of metapelites from the metamorphic basement of south-central Chile between 37° and 40°S, along with detrital zircon ages for a sample from the Piedra Santa metamorphic complex and a crystallization age of the Chachil plutonic complex, farther east in Argentina. Two distinct zircon age patterns are identified. One is a pattern with a dominant population of zircons at ca. 470 Ma (Ordovician), a widespread presence of Mesoproterozoic ages (1200 ? 1000 Ma), and a Carboniferous maximum deposition age indicated by the youngest zircon population. The second pattern is drastically different, with a main population of Permian zircons, a 290–250 Ma maximum deposition age, and a minor contribution of Pennsylvanian age zircons. Our results, coupled with previously reported metamorphic ages, show that the patterns reflect the presence of different tectonic blocks separated by the Mocha-Villarrica Fault Zone at 39°S. Metapelites north of this structure have the Ordovician-dominated pattern characteristic of the Western Series of the Paleozoic basement, and those south of the fault show the Permian-dominated pattern observed in the younger high-pressure metapelites from the Bahía Mansa metamorphic complex. The Piedra Santa metamorphic complex also shows the Ordovician-dominated pattern and was intruded by the Chachil plutonic complex dated here at ca. 303 Ma. Therefore, the Piedra Santa complex is interpreted as coeval with the Chilean metamorphic basement. The present dislocation of blocks with different ages is attributed to continental-scale dextral strike-slip tectonics along the Huincul Fault Zone, Argentina, which extends to the west as the Mocha-Villarrica Fault Zone in Chile.  相似文献   

19.
Conventional multi-grain and ion-microprobe dating of detrital zircons from a very low grade metagraywacke of the Tentudía Group (upper part of the Serie Negra, Ossa-Morena Zone, SW Spain) reveals an uppermost Vendian age for the deposition of the metagraywacke. The youngest detrital zircon grain provides a maximum depositional age of about 565 Ma. Thus, these data contradict earlier Middle to Upper Riphean (ca. 1350-850 Ma) estimates on the age of the Tentudía Group and favour a Precambrian/Cambrian boundary falling into the range of 540 to 530 Ma. The presence of about 20% of Pan-African detrital zircons ranging from about 700 to 550 Ma indicates the derivation from Gondwana. From the upper intercept ages of the fan-shaped data field defined by conventionally determined zircon fractions, it can be deduced that 2.1 Ga old zircons as well as Archean zircons existed in the provenance(s) of the Serie Negra sediments. This mixing of crustal components of different ages is in line with the Nd crustal residence age of 1.9 Ga. The latter value, as well as other model ages of the Iberian Massif, indicates unusually high amounts of ancient crust to be present in the strata. This is different to other (meta)sediments of the European Hercynides and suggests that the Iberian strata of uppermost Precambrian age may contain the detritus of more internal, older parts of Gondwana than other European strata of comparable ages. Geochemical data on the analysed sample and further metagraywackes of the Tentudía Group argue for a deposition in an arc environment. Such a scenario would conform with the syn- to post-orogenic shallow marine deposition of the studied sediments. Furthermore, an upper time limit for the pre-Lower Cambrian deformational history, including two phases of regional deformation, is given by the maximum age of deposition, implying a very short time interval for deposition and deformation of the Tentudía Group. Concerning the U-Pb systematics of detrital zircon fractions, it is probable that numerous, previously published conventional multi-grain zircon data on (meta)sedimentary rocks of the European Hercynides readily can be explained by the presence of up to 20% of Pan-African detrital zircons and later Phanerozoic lead loss during metamorphic transformation of the sedimentary protoliths. Moreover, this implies that such metasediments originated from post-Pan-African sedimentary precursors.  相似文献   

20.
深刻理解同位素在超高压变质及退变质过程中的地球化学行为对获得超高压变质岩准确并有明确意义的年龄值是非常重要的。对 Sm-Nd,Rb-Sr 同位素体系,只有变质矿物同位素体系达到平衡才能给出精确有意义的等时线年龄。研究表明,与副变质岩互层的细粒榴辉岩的高压变质矿物之间,或者强退变质岩石的退变质矿物之间,其 Nd,Sr 同位素可以达到平衡;然而高压变质矿物与退变质矿物之间 Nd,Sr 同位素不平衡。由于全岩样品总是含有数量不等的退变质矿物,因此石榴石 全岩 Sm-Nd 法或多硅白云母 全岩 Rh-Sr 法将有可能给出无地质意义的年龄。通常低温榴辉岩的高压变质矿物之间存在Nd 同位素不平衡。超高压变质岩多硅白云母所含过剩 Ar 主要源于榴辉岩原岩中角闪石在变质分解时释放出来的放射成因 Ar。因此,不含榴辉岩的花岗片麻岩多硅白云母基本不含过剩 Ar。对变质锆石成因的准确判断是正确理解锆石 U-Ph 年龄意义的关键。本文对不同成因锆石的判别标志及年龄意义做了总结,并指出将阴极发光图形,锆石痕量元素组成及矿物包裹体鉴定相结合是进行锆石成因鉴定的有效方法。高压变质或退变质增生锆石组成单一,是理想变质定年对象。然而变质重结晶锆石域常是重结晶锆石和继承晶质锆石的混合区,因而给出混合年龄。只有完全变质重结晶锆石才能给出准确变质时代。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号