首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

2.
Top–down and bottom–up regulation in the form of grazing by herbivores and nutrient availability are important factors governing macroalgal communities in the coral reef ecosystem. Today, anthropogenic activities, such as over-harvesting of herbivorous fish and sea urchins and increased nutrient loading, are altering the interaction of these two structuring forces. The present study was conducted in Kenya and investigates the relative importance of herbivory and nutrient loading on macroalgal community dynamics, by looking at alterations in macroalgal functional groups, species diversity (H′) and biomass within experimental quadrats. The experiment was conducted in situ for 42 days during the dry season. Cages excluding large herbivorous fish and sea urchins were used in the study and nutrient addition was conducted using coated, slow-release fertilizer (nitrogen and phosphorous) at a site where herbivory is generally low and nutrient levels are relatively high for the region. Nutrient addition increased tissue nutrient content in the algae, and fertilized quadrats had 24% higher species diversity. Herbivore exclusion resulted in a 77% increase in algal biomass, mainly attributable to a >1000% increase in corticated forms. These results are in accordance with similar studies in other regions, but are unique in that they indicate that, even when prevailing nutrient levels are relatively high and herbivore pressure is relatively low, continued anthropogenic disturbance results in further ecological responses and increased reef degradation.  相似文献   

3.
Dinoflagellates exhibit unique differences from diatoms in their adaptive ecologies that may be favoring their increasingly successful exploitation of coastal waters and global bloom expansion. Dinoflagellates behave as annual species, bloom soloists, are ecophysiologically diverse and habitat specialists, whereas diatoms behave as perennial species, guild members and are habitat cosmopolites. Diatoms have a relatively uniform bloom strategy based on species-rich pools and exhibit limited habitat specialization. Dinoflagellates have multiple life-form strategies consistent with their diverse habitat specializations, but rely on impoverished bloom species pools. Niche structure and dinoflagellate competition for niche space are considered. The “open niche period” formulated originally for Narragansett Bay is extrapolated as a general bloom paradigm. It is suggested that successful niche occupancy leading to blooms involves adaptive strategies at three heirarchic taxonomic elements: phylogenetic, generic and species-specific, and in that sequence. Transoceanic expatriation of emigrant species leading to indigenous status and blooms requires completion of a three-stage colonization process. Anthropogenic seedings are not, in themselves, bloom stimulation events; they are only the first phase of a multiple-step process. The organismal and niche features required for a hidden flora member to become a bloom species are considered, and the interplay between niche structure, habitat carrying capacity, colonization requirements and stochasticity as factors in the changing global bloom behavior of dinoflagellates discussed. The question is posed whether traditional perspectives of phytoplankton behavior apply completely to dinoflagellates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The short-term movements of a small temperate fish, the annular seabream Diplodus annularis (Linnaeus 1758), were examined using standard tag-recapture and passive acoustic telemetry in Palma Bay (NW Mediterranean), a marine protected area (MPA). The study aimed to provide valuable information for assessing the recreational fishery and its results suggest that MPAs can be used to protect the adult stock of D. annularis. All the fish tagged with standard tags were recaptured near the release locations, with a maximum distance of ∼300 m. The maximum time between release and recapture was 185 d. Two different arrays of acoustic receivers were deployed, one in 2008 and another in 2009, within the MPA. Twenty adults were surgically tagged with acoustic transmitters. Fish monitored in 2008 (n = 12) were translocated from the point of capture to analyse the movement behaviour after artificial displacement. Upon release at displaced locations, 67% of the fish moved towards the original capture location using a time of return that ranged from 0.75 to 15.25 h. Fish monitored in 2009 (n = 8) were released at the point of capture. They showed high site fidelity with a maximum period of 27 d between the first time and the last time they were detected.  相似文献   

5.
Aspects of sea-bed structure and benthic-macroinvertebrate species composition, distribution, richness and diversity in coastal waters off eastern Waiheke Island, Hauraki Gulf, are reported. In contrast to the sole historical account of sea-bed community structure from this same region, no widely distributed assemblages of species are recognised throughout it; no two sites share the exact same complement of species; and almost all sites are less than 80% similar in their taxonomic composition, most considerably so. Species richness and diversity are reported to vary with substratum type and depth, and spatially; species occurring within muds are the least diverse and species rich, followed by those of muddy gravels, and then gravels; many taxa prove common to the three substratum types; and dominance of taxa is recognised to decrease with an increase in substratum complexity, from muds to gravels, and species richness. With the exception of invasive marine species, apparent changes in the composition of assemblages throughout this region over the eight-decade period that data span are considered artefacts of the way in which such assemblages were historically defined. We recommend historical accounts of sea-bed community distributions throughout Hauraki Gulf be interpreted with caution, especially when attempting to use such schematic depictions to determine whether changes have occurred in assemblage composition.  相似文献   

6.
The impact of river load variability on the North Aegean ecosystem functioning over the last decades (1980–2000) was investigated by means of a coupled hydrodynamic/biogeochemical model simulation. Model results were validated against available SeaWiFS Chl-a and in situ data. The simulated food web was found dominated by small cells, in agreement with observations, with most of the carbon channelled through the microbial loop. Diatoms and dinoflagellates presented a higher relative abundance in the more productive coastal areas. The increased phosphate river loads in the early 80s resulted in nitrogen and silicate deficiency in coastal, river-influenced regions. Primary production presented a decreasing trend for most areas. During periods of increased phosphate/nitrate inputs, silicate deficiency resulted in a relative decrease of diatoms, triggering an increase of dinoflagellates. Such an increase was simulated in the late 90s in the Thermaikos Gulf, in agreement with the observed increased occurrence of Harmful Algal Blooms. Microzooplankton was found to closely follow the relative increase of dinoflagellates under higher nutrient availability, showing a faster response than mesozooplankton. Sensitivity simulations with varying nutrient river inputs revealed a linear response of net primary production and plankton biomass. A stronger effect of river inputs was simulated in the enclosed Thermaikos Gulf, in terms of productivity and plankton composition, showing a significant increase of dinoflagellates relative abundance under increased nutrient loads.  相似文献   

7.
Massive blooms of Phaeocystis colonies usually occur in the Belgian coastal zone (BCZ) between spring and summer diatom blooms but their relative magnitude varies between years. In order to understand this interannual variability, we used the biogeochemical MIRO model to explore the link between diatom and Phaeocystis blooms and changing nutrient loads and meteorological conditions over the last decade. For this application, MIRO was implemented in a simplified 3-box representation of the domain between the Baie de Seine and the BCZ. MIRO was run over the 1989–2003 period using actual photosynthetic active radiation (PAR), seawater temperature and riverine nutrient loads as forcing. The water mass residence time was calculated for each box based on a monthly water budget estimated from 1993–2003 water flow simulations of the three-dimensional hydrodynamical model COHSNS-3D. Overall MIRO simulations compare fairly well with nutrient and phytoplankton data collected in the central BCZ but indicate the importance of the hydrodynamical resolution frame for correctly describing the extremely high nutrient concentrations and biomass observed in the BCZ. Analysis of model results suggests that while interannual variability in diatom biomass depends on both meteorological conditions (light and temperature) and nutrient loads, Phaeocystis blooms are mainly controlled by nutrients. Further sensitivity tests with varying N and P loads suggest that only N reduction will result in significantly decreased Phaeocystis blooms without negative affects on diatoms, while P reduction will negatively affect diatoms. Moreover, Atlantic nutrient loads play such a great role in BCZ enrichment that reduction of Scheldt nutrient loads only is not sufficient to significantly decrease phytoplankton blooms in the BCZ. It is concluded that future nutrient reduction policies aimed to decrease Phaeocystis blooms in the BCZ without impacting diatoms should target the decrease of N loads in both the Seine and the Scheldt rivers.  相似文献   

8.
Size-fractionated primary productivity and chlorophylla concentration were studied at two stations in the temperate neritic water of Funka Bay, Japan, from April 1984 to May 1985. Size distributions of phytoplankton were discussed in relation to nutrient availability. In the central part of the bay, 66% of the annual primary production occurred during the spring phytoplankton bloom with 95% of the spring production being accounted for by the greater than 10µm size fraction, which was dominated by diatoms. The increase in this large fraction was enhanced at both stations when nutrient concentrations increased in the bay's upper layer. Under low nutrient concentrations during summer, small phytoplankters (<2µm) accounted for 40 to 75% (average 60%) of the total14C uptake at the central station, and from 25 to 59% (average, 45%) at the coastal station. However, a sudden nutrient enrichment at the coastal station during the summer triggered the growth of the large size fraction. These seasonal and regional changes in total14C uptake were attributed to the large size fraction, composed mainly of diatoms. From the decreases in various nutrients during diatom blooms, it was further suggested that the predominance of diatoms was determined, not only by nutrient concentrations, but also by their relative availability.Contribution No. 205 from the Research Institute of North Pacific Fisheries, Faculty of Fisheries, Hokkaido University.  相似文献   

9.
The three-dimensional circulation on the continental shelf off northern California in the wind events and shelf transport (WEST) experiment region during summer 2001 is studied using the primitive equation regional ocean modeling system (ROMS). The simulations are performed with realistic topography and initial stratification in a limited-area domain with a high-resolution grid. Forcing consists of measured wind-stress and heat flux values obtained from a WEST surface buoy. The general response shows a southward coastal upwelling jet of up to and a weakening or reversal of currents inshore of the jet when upwelling winds relax. Model results are compared to WEST moored velocity and temperature measurements at five locations, to CODAR surface current observations between Pt. Reyes and Bodega Bay, and to hydrographic measurements along shipboard survey lines. The model performs reasonably well, with the highest depth-averaged velocity correlation (0.81) at the inshore mooring (40 m water depth) and lowest correlation (0.68) at the mid-depth mooring (90 m depth). The model shows generally stronger velocities than those observed, especially at the inshore moorings, and a lack in complete reversal of southward velocities observed when upwelling winds relax. The comparison of surface velocities with CODAR measurements shows good agreement of the mean and the dominant mode of variability. The hydrography compares closely at the southern and northern edges of the survey region (correlation coefficients between 0.90 and 0.97), with weaker correlations at the three interior survey lines (correlation coefficients between 0.44 and 0.76). Mean model fields over the summer upwelling period show slight coastal jet separation off Pt. Arena and significant separation off Pt. Reyes. The cape regions also experience relatively strong bottom velocities and nonlinearity in the surface flow. Across-shelf velocity sections examined along the shelf reveal a double jet structure that appears just north of Bodega Bay and shows the offshore jet strengthening to the south. We examine the dynamics during an upwelling and subsequent relaxation event in May 2001 in which the WEST measurements show evidence of a strong flow response. The alongshelf variability in the upwelling and relaxation response introduced by Pt. Reyes is evident. Analysis of term balances from the depth-averaged momentum equations helps to clarify the event dynamics in different regions over the shelf. A clear pattern in the nonlinear advection term is due to the spatial acceleration of the southward jet around the capes of Pt. Arena and Pt. Reyes during upwelling. Results from a three-dimensional Lagrangian analysis of water parcel displacement show significant southward displacement in the coastal jet region, including a strong signal from the double jet. Alongshelf variability in parcel displacements and upwelling source waters due to the presence of Pt. Arena and Pt. Reyes is also apparent from the Lagrangian fields. A cyclonic eddy-like recirculation feature offshore of Pt. Arena prior to the upwelling event causes large patches of onshore-displaced parcels. Additionally, across-shelf variability in the response of water parcels along the D line includes decreased vertical displacement and increased alongshelf displacement in the offshore direction.  相似文献   

10.
Living benthic foraminiferal faunas of six stations from the continental shelf of the Bay of Biscay have been investigated during three successive seasons (spring, summer and autumn 2002). For the three investigated stations, bottom water oxygen concentration, oxygen penetration into the sediment and sediment organic carbon contents are all relatively similar. Therefore, we think that the density and the composition of the foraminiferal faunas is mainly controlled by the quantity and quality of organic input resulting from a succession of phytoplankton bloom events, occurring from late February to early September. The earliest blooms are positioned at the shelf break, late spring and early summer blooms occur off Brittany, whereas in late summer and early autumn, only coastal blooms appear, often in the vicinity of river outlets. In spring, the benthic foraminiferal faunas of central (B, C and D) and outer (E) continental shelf stations are characterised by strong dominance in the first area and strong presence in the second area of Nonionella iridea. In fact, station E does not serve as a major depocenter for the remains of phytoplankton blooms. If station E is not considered, the densities of this taxon show a clear gradient from the shelf-break, where the species dominates the assemblages, to the coast, where it attains very low densities. We explain this gradient as a response to the presence, in early spring, of an important phytoplankton bloom, mainly composed of coccolithophorids, over the shelf break. This observation is supported by the maximum particles flux values at stations close to the shelf break (18.5 g m− 2 h− 1) and lower values in a station closer to the coast (6.8 g m− 2 h− 1). In summer, the faunal density is maximum at station A, relatively close to more varied phytoplancton blooms that occur off Brittany until early June. We suggest that the dominant species, Nonion fabum, Cassidulina carinata and Bolivina ex. gr. dilatata respond to phytodetritus input from these blooms. In autumn, the rich faunas of inner shelf station G are dominated by N. fabum, B. ex. gr. dilatata, Hyalinea balthica and Nonionella turgida. These taxa seem to be correlated with the presence of coastal blooms phenomena, in front of river outlets. They may be favoured by an organic input with a significant contribution of terrestrial, rather low quality organic matter.  相似文献   

11.
Seasonal deposition fluxes of sinking phytoplankton, zooplankton and major mass compounds (i.e. calcium carbonate, biogenic opal and organic matter), intercepted by deep-moored sediment traps, are contrasted with their sediment accumulation rates over the 2700 m deep central Walvis Ridge in the oligotrophic SE Atlantic. These data provide the first seasonally resolved record of biogenic particle fluxes in the South Atlantic Central Gyre and serve as the oligotrophic end member of a gradient across the Benguela system to the highly productive coastal upwelling off Namibia. Maximum fluxes at the central Walvis Ridge were deposited in early austral spring, following winter deepening of the surface mixed layer and associated nutrient entrainment. Nearly 25% of the annual mass flux arrived in October, when sea surface temperature rose, deep vertical mixing halted and surface production collapsed. The annual flux of diatoms was dominated by small specimens of Nitzschia bicapitata (60%) whereas Globorotalia inflata dominated the foraminiferal fluxes (25%). Diatom diversity dropped significantly during the bloom periods, when up to 80% was composed of small N. bicapitata, but foraminiferal diversity remained about constant. The diatom flux maximum, together with those of biogenic silica and organic matter, preceded those of the foraminifera, pteropods, carbonate and total mass by 1 week. Fluxes of the left- and right-coiled shells of the deep-dwelling foraminifer Globorotalia truncatulinoides peaked in different seasons, a distinctive ecological behaviour which merits their taxonomic recognition as separate species. These findings testify to recent evidence for the existence of several genetic species within G. truncatulinoides and now suggest that such species may also have different seasonal responses.The Benguela trophic gradient showed a shoreward increase in particle fluxes, but differences were surprisingly small, testifying to only moderately enhanced export productivity and deposition at the Namibian margin relative to the oligotrophic central gyre. From the open ocean toward coastal upwelling, small and weakly silicified diatoms were substituted by other, larger and more heavily silicified species, possibly in response to decreased silica limitation. Foraminiferal deposition fluxes were increasingly dominated by G. inflata, accompanied by a change-over from many warm- to few cold-water minor species. The late winter maximum at the Namibian margin and the early spring maximum at the central Walvis Ridge were generated by the same process of collapsing surface productivity in response to the shut down of nutrient entrainment at the winter to summer transition, although delayed by up to 2 months in the Central Gyre. At the sediment-water interface, intense degradation of organic matter and biogenic silica resulted in poor preservation accompanied by pronounced changes in the species composition of siliceous phytoplankton. Of all particle groups at the central Walvis Ridge, only the export of foraminiferal shells appeared to be fully transferred into the sediment, and through their species assemblage to provide a sedimentary record of past seasonal productivity conditions of the upper ocean.  相似文献   

12.
Virtually every coastal country in the world is affected by harmful algal blooms (HABs, commonly called “red tides”). These phenomena are caused by blooms of microscopic algae. Some of these algae are toxic, and can lead to illness and death in humans, fish, seabirds, marine mammals, and other oceanic life, typically as a result of the transfer of toxins through the food web. Sometimes the direct release of toxic compounds can be lethal to marine animals. Non-toxic HABs cause damage to ecosystems, fisheries resources, and recreational facilities, often due to the sheer biomass of the accumulated algae. The term “HAB” also applies to non-toxic blooms of macroalgae (seaweeds), which can cause major ecological impacts such as the displacement of indigenous species, habitat alteration and oxygen depletion in bottom waters.Globally, the nature of the HAB problem has changed considerably over the last several decades. The number of toxic blooms, the resulting economic losses, the types of resources affected, and the number of toxins and toxic species have all increased dramatically. Some of this expansion has been attributed to storms, currents and other natural phenomena, but human activities are also frequently implicated. Humans have contributed by transporting toxic species in ballast water, and by adding massive and increasing quantities of industrial, agricultural and sewage effluents to coastal waters. In many urbanized coastal regions, these inputs have altered the size and composition of the nutrient pool which has, in turn, created a more favorable nutrient environment for certain HAB species. The steady expansion in the use of fertilizers for agricultural production represents a large and worrisome source of nutrients in coastal waters that promote some HABs.The diversity in HAB species and their impacts presents a significant challenge to those responsible for the management of coastal resources. Furthermore, HABs are complex oceanographic phenomena that require multidisciplinary study ranging from molecular and cell biology to large-scale field surveys, numerical modelling, and remote sensing from space. Our understanding of these phenomena is increasing dramatically, and with this understanding comes technologies and management tools that can reduce HAB incidence and impact. Here I summarize the global HAB problem, its trends and causes, and new technologies and approaches to monitoring, control and management, highlighting molecular probes for cell detection, rapid and sensitive toxin assays, remote sensing detection and tracking of blooms, bloom control and mitigation strategies, and the use of large-scale physical/biological models to analyze past blooms and forecast future ones.  相似文献   

13.
Dinoflagellate ecology is based on multiple adaptive strategies and species having diverse habitat preferences. Nine types of mixing-irradiance-nutrient habitats selecting for specific marine dinoflagellate life-form types are recognised, with five rules of assembly proposed to govern bloom-species selection and community organisation within these habitats. Assembly is moulded around an abiotic template of light energy, nutrient supply and physical mixing in permutative combinations. Species selected will have one of three basic (C-, S-, R-) strategies: colonist species (C-) which predominate in chemically disturbed habitats; nutrient stress tolerant species (S-), and species (R-) tolerant of shear/stress forces in physically disturbed water masses. This organisational plan of three major habitat variables and three major adaptive strategies is termed the 3-3 plan. The bloom behaviour and habitat specialisation of dinoflagellates and diatoms are compared. Dinoflagellates behave as annual species, bloom soloists, are ecophysiologically diverse, and habitat specialists whose blooms tend to be monospecific. Diatoms behave as perennial species, guild members, are habitat cosmopolites, have a relatively uniform bloom strategy based on species-rich pools and exhibit limited habitat specialisation. Dinoflagellate bloom-species selection follows a taxonomic hierarchical pathway which progresses from phylogenetic to generic to species selection, and in that sequence. Each hierarchical taxonomic level has its own adaptive requirements subject to rules of assembly. Dinoflagellates would appear to be well suited to exploit marine habitats and to be competitive with other phylogenetic groups, yet fail to do so.  相似文献   

14.
A comparative analysis was conducted on climate variability in four sub-arctic seas: the Sea of Okhotsk, the Bering Sea shelf, the Labrador Sea, and the Barents Sea. Based on data from the NCEP/NCAR reanalysis, the focus was on air–sea interactions, which influence ice cover, ocean currents, mixing, and stratification on sub-seasonal to decadal time scales. The seasonal cycles of the area-weighted averages of sea-level pressure (SLP), surface air temperature (SAT) and heat fluxes show remarkable similarity among the four sub-arctic seas. With respect to variation in climate, all four seas experience changes of comparable magnitude on interannual to interdecadal time scales, but with different timing. Since 2000 warm SAT anomalies were found during most of the year in three of the four sub-arctic seas, with the exception of the Sea of Okhotsk. A seesaw (out of phase) pattern in winter SAT anomalies between the Labrador and the Barents Sea in the Atlantic sector is observed during the past 50 years before 2000; a similar type of co-variability between the Sea of Okhotsk and the Bering Sea shelf in the Pacific is only evident since 1970s. Recent positive anomalies of net heat flux are more prominent in winter and spring in the Pacific sectors, and in summer in the Atlantic sectors. There is a reduced magnitude in wind mixing in the Sea of Okhotsk since 1980, in the Barents Sea since 2000, and in early spring/late winter in the Bering Sea shelf since 1995. Reduced sea-ice areas are seen over three out of four (except the Sea of Okhotsk) sub-arctic seas in recent decades, particularly after 2000 based on combined in situ and satellite observations (HadISST). This analysis provides context for the pan-regional synthesis of the linkages between climate and marine ecosystems.  相似文献   

15.
The consequences of two upwelling events in mid- (MW) and late (LW) winter on biogeochemical and phytoplankton patterns were studied in the Pontevedra Ria and compared with the patterns measured under typical winter conditions and under a summer upwelling event. Thermohaline patterns measured during the mid-winter upwelling event (MW-up) revealed the intrusion of saltier seawater (35.9) into the ria associated with the Iberian Poleward Current (IPC). During the late-winter upwelling event (LW-up), the seawater which had welled up into the ria showed characteristics of the Eastern North Atlantic Central Water mass (ENACW). In both cases the measured water residence time (4 days during MW-up and 10 days during LW-up) was related to both meteorological and fluvial forcing. This residence time contrasts with that of summer upwelling (7 days) and with that estimated under unfavorable upwelling atmospheric conditions (2–4 weeks). During MW-up, the ria became poor in nutrients due to continental freshwater dilution, associated with the shorter residence time of the water, and the intrusion of IPC, which is a water body poor in nutrient salts: 2.9 μM of nitrate, 0.1 μM of phosphate and 1.5 μM of silicate. During this event, the ria exported 3.4 molDIN s−1, compared with 6.9 molDIN s−1 in non-upwelling conditions. Phytoplankton showed a uniform distribution throughout the ria, as during unfavorable upwelling conditions, and was characterized by the dominance of diatoms, mainly Nitzschia longissima and Skeletonema costatum. During LW-up, a nutrient depletion in the photic layer also occurred, but as a result of a phytoplankton spring bloom developing at this time. The ria was a nutrient trap where 4.1 molDIN s−1 were processed by photosynthesis. This budget is three times higher than the one under non-upwelling conditions. In contrast with the MW-up, which had no effect on primary production, during LW-up the ria became more productive, although not as productive as during a summer upwelling event (9.9 molDIN s−1). The taxonomic composition of the phytoplankton community did not change noticeably during LW-up and the summer upwelling, with the same species present and changing only in relative proportions. Diatoms were always the dominant microphytoplankton community, with Pseudonitzschia pungens, Thalassionema nitzschioides and several species of Chaetoceros as characteristic taxons.  相似文献   

16.
Copepod assemblages in a highly complex hydrographic region   总被引:2,自引:2,他引:2  
Community structure and diversity patterns of planktonic copepods were investigated for the Southwestern Atlantic Ocean between 34 and 41°S. Our objectives were (1) to define copepod assemblages, (2) to accurately identify their association to different water masses/hydrodynamic regimes, (3) to characterize the assemblages in terms of their community structure, and (4) to test if frontal boundaries between water masses separate copepod assemblages. Biogeographic patterns were investigated using multivariate analysis (cluster and ANOSIM analyses). Biodiversity patterns were examined using different univariate indexes (point species richness and taxonomic distinctness). Five regions of similar copepod assemblages were defined for our study area each one corresponding to different environments (freshwater, estuarine, continental shelf, Malvinas and Brazil current assemblages). These assemblages have major community structure differences. In spite of the complex oceanographic scenario of our study area, that can lead us to expect a pattern of copepod communities with diffuse boundaries, we found a strong spatial correspondence between these limits and the presence of permanent frontal structures.  相似文献   

17.
The use of fractal geometry to evaluate seagrass scaling behavior and the persistence of seagrass landscape patterns in relation to a disturbance is presented in this paper.Ria Formosa is a dynamic barrier-island system with a migrating inlet that creates a cyclic disturbance in a seagrass landscape. Seagrass patches which develop in the intertidal and shallow subtidal areas of Ria Formosa were digitized from a temporal sequence of aerial photographs, from 1980 to 1998. The methodology used to evaluate seagrass scaling behavior was proposed by Meltzer and Hastings (1992), and relates the frequency distribution of patch size with the existence of patch size-related patterns. The Hurst exponent was calculated to assess the temporal persistence of the seagrass landscape. Univariate regression was used to investigate relations between temporal persistence and disturbance. The existence of patch size-related patterns was identified for all years suggesting shifts in generating processes occurring at different domains of scales in the seagrass landscape. The results enforces the idea that it is important to recognize the existence of diverse processes occurring at different domains of scales and, emphasizes the importance of evaluating issues of temporal and spatial scale while trying to understand changes in seagrass landscapes. The Hurst exponent estimates show that although the migration and relocation of the inlet affected this system the evolutionary trajectory of the seagrass landscape is persistent, i.e., the patch dynamics observed is stable. Furthermore, persistence values were different for differently sized patches, small patches having lower persistence then larger patches.  相似文献   

18.
A quantitative model of the trophic network of Northern Adriatic Sea marine ecosystem during the 1990s has been constructed, with the goal of analysing its trophic structure, identifying the key trophic groups and assessing the anthropogenic impacts on the ecosystem using the Ecopath modelling protocol. The Northern Adriatic Sea is an eutrophic, shallow basin, and one of the most heavily fished areas in the Mediterranean Sea. The network aggregation into discrete trophic levels sensu Lindeman shows that low trophic levels dominate biomass and energy flows, with 40% of the total system throughput flowing out from trophic level 2. Instead, upper trophic levels appear bottom-up controlled, highly depleted and not exerting any control on the trophic network, as shown by mixed trophic impact-based analyses. Microbial loop is comparable to grazing with respect to the magnitude of flows involved, as 66% of the trophic network flows originate from detritus, which is mainly consumed by bacteria. Key trophic groups are plankton groups, macro-crustaceans and detritus, and other r-selected organisms like squids and small pelagics, which have a great influence on the ecosystem. In particular, zooplankton acts as a bottleneck for energy flows, limiting the energy from the low trophic levels effectively reaching the upper food web. The high pelagic production caused by eutrophication sustains high fishery landings and impressive discard quantities, as well as the benthic compartment. Overall, the ecosystem appears quite productive and in a stressed and developmental status. Model results and comparisons with few existing historical data suggest that the low maturity and stressed state of the Northern Adriatic Sea are not only due to natural characteristics, but mainly to anthropogenic pressures.  相似文献   

19.
Abstract. Thirteen sampling cruises were conducted at weekly intervals in the inner part of the Gulf of Naples in the summer of 1983 to investigate the effects of excess nutrient inputs on phytoplankton communities. High surface phytoplankton concentrations (up to 1.15 ×108 cells 1-1) were recorded, particularly near Naples harbour and along the eastern coast, two locations that receive most of the area's sewage and industrial discharge. Phytoplankton populations were generally dominated by small species, mainly diatoms, which were associated with small phytoflagcllatcs. Species diversity values were relatively high (H'≤ 3.62) in most samples. Throughout the sampling period a high spatial and temporal variability for phytoplankton abundances and species composition was observed.  相似文献   

20.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号