首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alumina‐based microstructural composites combining equiaxed and textured layers were fabricated to examine how cracks propagate and the mechanical properties are affected as a function of the residual stress and volume fraction of texture in a multilayer structure. By combining equiaxed and highly textured alumina layers of varying thermal expansion, the embedded textured layers were placed under compressive residual stresses as high as ?670 MPa. Composites with a near constant maximum failure stress of up to 300 MPa were shown to be almost independent of the initial defect size as result of the compressive residual stress in the textured layers. An apparent fracture toughness of up to 10.1 MPa·m1/2 was obtained for composites with an equiaxed to textured volume ratio of 7.4:1. The high compressive stress in the textured layers arrested cracks, whereas the weak bonding parallel to the basal surfaces of the textured alumina grains caused cracks to deflect within the textured layers. The coupling of these two mechanisms resulted in crack arrest and a maximum work of fracture of ~1200 J/m2 or almost 50 times higher than equiaxed alumina. We believe that embedding textured layers having compressive stresses below the surface of multilayer composites represent an important strategy for designing flaw‐tolerant materials with pronounced crack growth resistance and a high work of fracture.  相似文献   

2.
《Ceramics International》2022,48(10):13563-13571
The h-BN matrix multilayer composites with alternately stacked untextured/textured layers were fabricated by hot-pressing from the alternately stacked “fine h-BN powders” layers and “plate-like h-BN powders + 3Y2O3–5Al2O3” layers. During the hot-pressing process, Y2O3 and Al2O3 reacted, forming Y3Al5O12, which provided a liquid phase environment for h-BN plates to be readily rotated and oriented under the action of the uniaxial pressure. The residual compressive stress in textured layers, which was caused by the mismatch of thermal expansion between textured layers and untextured layers, resulted in crack arrest at the first textured layer in the multilayer composite with 49 vol% textured layers, which improved its flexural strength and fracture toughness by 33.1% and 23.4% compared with the textured monolith, respectively. The multilayer composite with 35 vol% textured layers behaved a much better directional heat transfer performance than the textured and untextured monoliths, making it a promising candidate as thermal management devices in electronics.  相似文献   

3.
Laminar composites, containing layers of Y–TZP and either Al2O3 or a mixture of Al2O3 and Y–ZrO2 have been fabricated using a sequential centrifuging technique of water solutions containing suspended particles. Controlled crack growth experiments with notched beams of composites were done and showed the significant effect of barrier layer thickness and composition on crack propagation path during fracture. Distinct crack deflection in alumina layers was observed. The increase of crack deflection angle with the alumina layer thickness was also found. In the case of the barrier layer made of a mixture, crack deflection did not occur independently on layer thickness. The observed changes have been correlated with the radial distribution of residual stresses in barrier layers created during cooling of sintered composites from fabrication temperature. The stresses found were the result of the difference in the thermal expansion and sintering shrinkage of alumina and zirconia and the crystallographically anisotropic thermal expansion of the alumina. The residual stress distribution has been measured by piezo-spectroscopy based on the optical fluorescence of Cr+3 dopants in alumina.  相似文献   

4.
Mimicking the damage tolerance of biological materials such as nacre has been realised in textured layered alumina ceramics, showing improved reliability as well as fracture resistance at room temperature. In this work, the fracture behaviour of alumina ceramics with textured microstructure and laminates with embedded textured layers are investigated under uniaxial bending tests at elevated temperatures (up to 1200 °C). At temperatures higher than 800 °C monolithic textured alumina favours crack deflection along the basal grain boundaries, corresponding to the transition from brittle to more ductile behaviour. In the case of laminates, the loss of compressive residual stresses is counterbalanced by the textured microstructure, effective up to 1200 °C. This study demonstrates the potential of tailoring microstructure and architecture in ceramics to enhance damage tolerance within a wide range of temperatures.  相似文献   

5.
This work demonstrates how to enhance contact damage resistance of alumina-based ceramics combining tailored microstructures in a multilayer architecture. The multilayer system designed with textured alumina layers under compressive residual stresses embedded between alumina–zirconia layers was investigated under Hertzian contact loading and compared to the corresponding monolithic reference materials. Critical forces for crack initiation under spherical contact were detected through an acoustic emission system. Damage was assessed by combining cross-section polishing and ion-slicing techniques. It was found that a textured microstructure can accommodate the damage below the surface by shear-driven, quasi-plastic deformation instead of the classical Hertzian cone cracking observed in equiaxed alumina. In the multilayer system, a combination of both mechanisms, namely Hertzian cone cracking on the top (equiaxed) surface layer and quasi-plastic deformation within the embedded textured layer, was identified. Further propagation of cone cracks at higher loads was hindered and/or deflected owed to the combined action of the textured microstructure and compressive residual stresses. These findings demonstrate the potential of embedding textured layers as a strategy to enhance the contact damage tolerance in alumina ceramics.  相似文献   

6.
This work demonstrates damage tolerant behavior of ceramic laminates designed with residual stresses and free of surface edge cracks. Non-periodic architectures were designed by embedding 2 textured alumina (TA) layers between 3 equiaxed alumina-zirconia (AZ) layers. Compressive residual stresses of ∼ 250 MPa were induced in the textured layers. Indentation strength tests showed that textured compressive layers arrested the propagation of cracks. Results were compared to periodic architectures with the same volume ratio of TA and AZ materials. Crack propagation was arrested in both periodic and non-periodic designs; the minimum threshold-strength being higher in the latter. Non-periodic architectures with compressive layers as thin as ∼ 200 μm showed no evidence of surface edge cracks, yet still reached minimum threshold strength values of ∼ 300 MPa. In addition, the textured microstructure promoted crack bifurcation in the thin compressive layers and thus enhanced the damage tolerance of the material.  相似文献   

7.
《Ceramics International》2021,47(22):31222-31228
Inherent brittleness and low mechanical reliability usually inhibit the application of ceramic materials in many structural applications. In this work, we demonstrate that integrating crystallographic texture and second-phase toughening strategies can effectively improve fracture resistance and mechanical reliability in alumina multilayer composites. Composites consisted of equiaxed (1-x)Al2O3-xZrO2 and highly [0001]-textured Al2O3 layers were fabricated, and effects of ZrO2 amount on fracture behavior and mechanical properties of the composites were studied. Increasing ZrO2 amount x results in larger thermal expansion difference between equiaxed and textured layers. The composites with equiaxed layers containing 30 vol% ZrO2 exhibit high apparent fracture toughness Kapt, c ~11.7 MPa·m1/2 and work of fracture γWOF ~1540 J/m2, which correspond respectively to about 260% and 410% enhancements relative to those without ZrO2 addition. Moreover, adding ZrO2 remarkably reduces sensitivity of failure stress to flaw size in the multilayer composites, and the failure stress substantially increases with increasing ZrO2 content. The greatly enhanced mechanical performance achieved here can be mainly attributed to higher magnitude of compressive stresses, more crack bifurcations and longer crack deflection paths within the textured layers. This work can provide important guidelines for developing novel “bio-inspired” materials with improved fracture resistance and flaw tolerance behavior.  相似文献   

8.
《Ceramics International》2019,45(11):13988-13998
Introducing carbon nanotubes (CNTs) by electrophoretic deposition (EPD) is a promising method to improve the strength and toughness of carbon/carbon (C/C) composites. Herein, a new reinforcing mechanism called “compressive residual thermal stress (RTS) induced crack deflection” has been reported. Concretely, CNTs, with different loading content, were introduced by EPD method. Results showed that the CNT content had little influence on CNT-induced matrix refinement. However, the strength of the CNT-doped C/C composites increased with the rising content of CNTs and cracks could only deflect when the CNT interface reached a certain thickness. A theory based on compressive RTS induced crack deflection was built to interpret this discrepancy. Tensile stress existed at the interface in pure C/C composites, while compressive stress occurred and increased with the rising thickness of the CNT interface, which were verified by finite element analysis and Raman test. Calculation revealed that compressive stress exceeded 30 MPa at the crack tip could make the crack deflection happen more easily since it released more strain energy than penetration.  相似文献   

9.
Laminates with alternating layers are well known from nature. The strongly bonded alumina/zirconia (Al2O3/ZrO2) layers can combine high fracture resistance with high strength and stiffness when properly tailored. The presence of compressive residual stresses formed in Al2O3 layers can suppress and deflect cracks propagating through the layers. The crack path is governed by both the elastic properties and the internal stress field of individual layers. The laminates with various layer-thickness ratios ranging from 0.1 to 3 were used to investigate the effect of residual stresses and influence of crack formation pattern on the crack path development. The indentation surface cracks observed in various alumina-zirconia laminates exhibit the same crack deflection independently on the level of internal stresses. The crack deflection observed on the fracture surfaces of bending specimens was related to the indentations cracks. The complicated crack path was explained experimentally by 3D reconstruction with the support of numerical simulations.  相似文献   

10.
Porous alumina with a highly textured microstructure was fabricated by pulse electric current sintering (PECS) using alumina platelets. Highly oriented porous alumina with a porosity of 3%–50% was obtained by a pressure-controlled method of PECS. The properties of the highly textured porous alumina were measured in two directions. The nitrogen gas permeance and thermal conductivity at room temperature were higher in the direction along the platelet length due to the higher continuity of pores and the connectivity of alumina platelets, respectively. The anisotropy of the thermal conductivity at room temperature was investigated and explained by the effect of grain size of platelets as well as morphology and orientation of pores. The bending strength was higher with the loading direction along the platelet thickness. The thermal shock strength was clearly different in the two directions. The difference in the thermal shock strength was investigated by the measurement of properties and thermal stress analysis.  相似文献   

11.
The wear behaviour of a monolithic alumina and an alumina-aluminium titanate laminated structure was studied. The laminate, containing surface fine grained alumina layers and internal composite layers with 10 vol.% of aluminium titanate, showed relatively low (≅20 MPa) compressive residual stresses at the surface. Interfaces between layers were constituted by large alumina grains (up to ≅50 μm) that promoted toughening due to crack deflection and branching. Wear tests were performed on square specimens (30 mm × 30 mm × 6 mm) using the pin-on-disc method. The laminates showed higher wear resistance than the monolithic alumina. The analysis of the results together with SEM-EDX observations was performed to identify possible wear mechanisms. The wear resistance improvements are discussed in terms of the residual stresses in the laminate and the properties provided by the special microstructure of the interfaces.  相似文献   

12.
13.
A physical geometric model of the dynamic growth of thermally grown oxide (TGO) was established based on an analysis of the TGO growth of 8YSZ thermal barrier coatings during thermal cycling. Finite-element simulation was used to simulate the evolution law between the coating residual stress and thermal cycling, and the linear elasticity, creep effect, and stress accumulation in each thermal cycle were studied. The interface between the top coat (TC) and the bond coat (BC) was covered with a TGO layer that grew vertically and slowly in a layer-like manner. The stress in the TGO was distributed with a “layer” zonal gradient, and the TGO/BC boundaries were distributed uniformly with a large compressive stress, which decreased the TGO layer thickening. With the longitudinal rapid random TGO growth, the boundaries were subjected to a tensile stress, and a high tensile stress concentration area developed at the boundaries. The internal stress consisted of an alternating and mixed distribution of concentrated compressive and tensile stresses. The concentration area of the maximum equivalent stress was distributed in the one-layer TGO near the TC/TGO interface. When a microcrack formed at the TGO/BC boundaries, the crack was subjected to a tensile stress of different size, with a higher tensile stress at both ends, which facilitated crack expansion. Thus, the 8YSZ thermal barrier coating was prone to crack formation and expansion at the TGO/BC boundaries and in the TGO layer near the TC/TGO boundaries.  相似文献   

14.
The paper describes the preparation of laminate piezo-ceramic composite consisting of Al2O3, ZrO2 and BaTiO3 layers and proves the idea of residual stresses utilization for crack deflection and handling with the brittleness of BaTiO3. The laminate was prepared by alternate electrophoretic deposition. Although the laminate was sintered at 1300 °C and consisted of layers having a density between 57 % (ZrO2) and 73 % (BaTiO3), the hardness and elastic modulus of layers corresponded to those of free sintered monolithic ceramics at a comparable level of porosity. The crack deflection at the interface between individual layers was observed having the same effect and magnitude as deflection observed in the case of fully dense Al2O3/ZrO2 laminates. An interlayer developed on the interface between Al2O3 and BaTiO3 had no negative impact on crack propagation.  相似文献   

15.
Unidirectional, continuous-fiber composites were fabricated using polycrystalline alumina fibers and four different silicate glass matrices of differing thermal expansion. Fracture toughness measurements, strength measurements, and fractographic analysis of failed specimens are used to identify the failure mechanism. Results show that the elastic modulus mismatch between the matrix and the fibers shields the reinforcing fibers from matrix crack extension, thereby increasing composite toughness without fiber pullout. Fractographic analysis shows that fiber shielding leads to fiber failure ahead of matrix crack. Composite toughness increases linearly with increases in the residual compressive stress in the matrix phase. Ultimate composite strengths are dependent upon thermal-expansion-induced residual stresses and fiber strength.  相似文献   

16.
《Ceramics International》2016,42(7):8478-8487
Highly porous alumina particle stabilized foams were prepared by combining the concepts of particle stabilized foams and gelcasting, using sulfonate surfactants and poly vinyl alcohol (PVA) as the gelcasting polymer. The ceramic samples sintered at 1500 °C for 2 h had porosities from 65% to 93%, with pore sizes in two categories: “big pore” around 300 μm and “small pore”, around 100–150 μm, depending on the type and amount of surfactant added. The mechanical behaviour of the foams (axial and diametral compression) depended on the overall porosity and pore size. On average, tensile and compressive strengths around 5 and 16 MPa respectively were measured for samples with bigger pore sizes and larger porosities. Samples with smaller pore sizes and lower porosities produced average values of 12 and 57 MPa for tensile and compressive strengths, respectively. The elastic modulus reached a maximum around 3GPa for “small pore” size samples. The effect of increasing amount of PVA in the samples had a strong effect on the green mechanical strength, but it did not significantly affect the mechanical response of the sintered alumina foams. Large and complex shape sintered components produced using this route showed a remarkable damage tolerance, due to crack tip blunting.  相似文献   

17.
Bioactive glasses and particles reinforced composites were used to coat alumina substrates, in order to combine the mechanical properties of the high-strength alumina with the bioactivity of the coatings. The coatings were either monolithic glass or glass-matrix/zirconia particle composite and were prepared by a low-cost firing method. A multilayer approach was applied to minimize crack propagation at the interface between the coating and the substrate. Functionally graded structures were developed to achieve a compliant material to withstand the stresses due to the expansion coefficient mismatch between the substrate and the coatings. The sequential coating of the alumina with glass-matrix/zirconia particle composite layers produced a structurally stable composite structure. A systematic study revealed that multiple layers were necessary to provide a gradual compliance of the thermal expansion coefficient. The glass-matrix/zirconia particles composites layers were also essential for the control of the Al3+ diffusion from the substrate through the glass. This is in accordance with the experimental results of previous works. Thus, the alumina content in the coating should be maintained as low as possible in order to preserve its bioactivity. The composite layers were further coated by a glass belonging to the system SiO2–CaO–P2O5–Na2O–MgO–F, known for its bioactivity. The experimental results were substantiated by optical and scanning electron microscopy (SEM) with compositional analysis (EDS) and by a mechanical characterization. The in vitro behavior of the coated samples was investigated by means of soaking in simulated body fluid (SBF) followed by SEM observation and XRD analysis.  相似文献   

18.
Textured alumina has been fabricated previously by either hot-deformation processing, to produce moderate texture, or templating with aligned platelets, to produce stronger texture. Fracture-toughness measurements on ceramics fabricated by hot deformation have indicated only a modest improvement in toughness compared with that of untextured ceramics, while measurements on more strongly textured ceramics have been very limited. In this work, a simplified process for fabricating highly textured alumina was developed, using a solvent-based slurry, tape casting, and liquid-phase sintering. Grain size was tailored to maximize the likelihood of grain bridging and crack deflection. Image analysis was used to characterize morphologic texture, and X-ray pole-figure analysis was used to measure crystallographic texture. Fracture tests revealed significant changes to the crack path as a result of the texture. However, the apparent fracture resistances measured using single-edge notched-beam samples were similar for textured and untextured ceramics. The lack of apparent toughening resulting from texturing is discussed in light of previous results.  相似文献   

19.
The effect of box and continuous enameling furnace firing schedules on the thermal deflection of enameled iron strips was studied. Effective coefficient of thermal expansion values were calculated from coefficient of thermal deflection data. Results indicate that the effective thermal expansion values for annealed and unannealed enameled iron agree with the expansion data obtained by an interferometer study of the same enamels. Variation in the cooling rate of the enameling furnaces studied is sufficient to produce a marked change in the development of thermal stress in the enameled iron. Residual compressive stresses in the enamel are increased by rapid cooling from firing temperatures. Tensile stress developed in the enamel during reheating is reduced by previous annealing.  相似文献   

20.
Porous cordierite ceramics were synthesised by gel-casting method, using talcum powder, kaolin and alumina as raw materials. Organic monomers and cross-linker were used as additives. The phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscope. The open porosity, compressive strength and thermal expansion coefficient were tested by the Archimedes method, universal testing machine and thermal expansion instrument, respectively. The results indicate that sintering temperature and holding time have a great influence on the cordierite properties. We obtain the good performance of porous cordierite ceramic sintering at 1350°C for 3?h. The cordierite phase content in the sample is higher and the crystallinity is better. At this point, the porosity is 58.53%, the compressive strength is 22.44?MPa and thermal expansion coefficient reaches 1.69?×?10?6?°C?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号