首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mineral phases including olivine, orthopyroxene, clinopyroxene, troilite, nickel-iron, plagioclase, chromite and the phosphates were separated from several meteorites. These were a hypersthene chondrite (Modoc), a bronzite chondrite (Guareña), an enstatite chondrite (Khairpur), and two eucrites (Haraiya and Moore County); diopside was separated from the Nakhla achondrite. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. On the meteorites examined our results show that Co, Ni, Cu, Ge, As, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt and Au are entirely or almost entirely siderophile; Na, Rb, Sr, Y, Ba and the rare earth elements lithophile; Se chalcophile. The transition elements So, Ti, V, Cr and Mn are lithophile in most stony meteorites, but show chalcophile affinities in the enstatite chondrites (and enstatite achondrites), as do Zn, Zr and Nb. In the ordinary chondrites Ga shows both lithophile and siderophile affinities, but becomes entirely siderophile in the enstatite chondrites. Molybdenum and tellurium show strong siderophile and weaker chalcophile affinity. The lithophile elements are distributed among the minerals according to the crystallochemical factors, the most effective controlling factor being ionic size.  相似文献   

2.
Kristen Hansen 《Lithos》1981,14(3):183-188
Mesozoic lamprophyre and carbonatite dykes from southern West Greenland, which are believed to have evolved from a single mantle-derived magma by crystal fractionation and liquid immiscibility, have initial Sr-isotopic ratios which are negatively correlated with the increasing contents of Sr, Nb and Zr through the suite. The isotopic variation is suggested to have resulted from contamination with radiogenic crustal Sr after the formation of the various rock types of the suite.  相似文献   

3.
The meta-volcanic amphibolites closely associated with the Fiskenaesset anorthosite complex can be subdivided on the basis of trace element patterns or mineral chemistry; by far the most abundant type has light rare-earth element (LREE) depleted REE patterns and displays a wide range in trace element abundances. Chemically comparable amphibolites can be recognised throughout the ca. 2800 M.yr. West Greenland terrain.The geochemistry of the basaltic amphibolites is dominantly controlled by fractional crystallisation processes, although variable degrees of partial melting may also be important. The required crystal extract (plagioclase dominated) in the proposed fractionation scheme is very similar to the primary mineralogy of cumulates of the Fiskenaesset complex and trace element models support a genetic relationship between the anorthosite complex and enclosing host amphibolites.The application of trace element discrimination to assign tectonic environment in the Archaean is arguable. However, details of the trace element chemistry (especially chondritic La/Ta ratios) are taken to suggest, out of a range of likely tectonic environments, an ocean floor, rather than island arc, affinity for the Fiskenaesset amphibolites. The large ion lithophile (LIL) elements display erratic distribution patterns, but are generally enriched relative to the REE. This appears not to be related to high-grade metamorphism but may be a relict feature of seafloor alteration. The association of the cumulate sequence with meta-volcanic amphibolites and metasediments probably represents an ocean floor assemblage emplaced into the lower crust during crustal accretion.  相似文献   

4.
Island arc basaltic rocks (basalts and basic andesites with SiO2 < 56.5%) from the Soufrière volcano. St. Vincent, West Indies (prehistoric lavas and 1902 and 1979 eruptions) underwent extensive fractional crystallization at various levels during the ascent of the magma. Although the precipitation of minerals occurring in coarse-grained cumulate inclusions dominated the derivation of basic andesites from basaltic magma, the distribution of the trace elements is not consistent with a simple fractional crystallization process. The lavas have a partially cumulate character and were probably generated from similar but separate parental magmas. The partition coefficients of transition and large ion lithophile elements are given for clinopyroxene, amphibole. olivine, plagioclase and titanomagnetite in basaltic liquid which crystallized under well-defined P-T conditions. The temperatures obtained from the geothermometers based upon the distribution of the major elements are in good agreement with the data from trace element geothermometers.  相似文献   

5.
Our database of published contents of volatile, major, and trace elements in melt inclusions in minerals and quenched glasses of volcanic rocks was used to calculate the mean compositions of alkaline and subalkaline melts of ocean islands. The data array included ~10300 determinations from more than 200 publications. The alkaline basic melts (mean Na2O + K2O is 4.75 wt %) are strongly enriched compared with the subalkaline melts (mean Na2O + K2O is 2.70 wt %) in volatile components (0.96 and 0.37 wt % H2O, 650 and 190 ppm Cl, 1480 and 320 ppm F, and 930 and 530 ppm S, respectively) and many trace elements. For instance, the alkaline and subalkaline melts contain 31.8 and 7.2 ppm Rb, 50.1 and 9.6 ppm Nb, and 39.9 and 5.7 ppm La, respectively. Such relations were not observed for V, Cr, Co, Cu, Ga, and Sc. As to the major elements, the alkaline melts show significantly higher contents of Ti, Fe, and P, but lower contents of Si and Mg compared with the subalkaline melts. The enrichment of the alkaline melts in many trace elements compared with the subalkaline melts is retained also in silicic melts. The distribution of trace elements suggests a higher contribution of pyroxenite material during the formation of alkaline melts.  相似文献   

6.
Precambrian cherts from the Fig Tree and Onverwacht groups of South Africa contain unusually high concentrations of chromium and nickel. The organic carbon content of these cherts (0.02–1.58%) shows a considerable variation with a maximum abundance in the Onverwacht group. Atomic H/C ratios (0.08–1.38) of the associated organic matter (kerogen) support the suggestion that the carbon isotopic values of kerogen have not been isotopically enriched by metamorphic processes. Chemically bound alipathic structures amount to about 10% by weight of the organic carbon content of a chert from the lowermost Theespruit succession.  相似文献   

7.
The petrogenesis of the Fiskenaesset anorthosite body has been investigated using major and trace element data for a large range of rock types from each zone of the complex. The chemistry of these ultramafic to anorthositic cumulates is interpreted in terms of crystal fractionation of a parental, trace element impoverished, tholeiitic magma, involving crystallisation of the cumulus phases olivine, orthopyroxene, clinopyroxene and (dominant) plagioclase feldspar. Amphibole appears not to have been a significant cumulus phase at any stage of crystallisation of the body, the abundant amphibole found in the rocks of the complex being produced by primary intercumulus crystallisation, supplemented by secondary metamorphic recrystallisation. Similarly, magnetite is unlikely to have been a significant early cumulus phase, although, together with chromite, it crystallised as a cumulus phase at high stratigraphic levels in the complex. The metamorphism appears to be largely isochemical, although sub-solidus metamorphic re-equilibration of the REE can be demonstrated on a grain-size scale.The spatial and temporal association between the anorthosite complex and the bordering metavolcanic amphibolites is matched by a strong similarity between the observed trace element chemistry of the amphibolites and the trace element chemistry of calculated successive liquids for the complex. This is taken to suggest a genetic relationship between the evolution of the anorthosite complex and enclosing amphibolites. The presence of trace element impoverished amphibolites (which are not cumulates) with trace element abundances comparable to those of the suggested parental liquid to the anorthosite complex, is used to derive a major element composition for the primary Fiskenasset magma. This composition approximates a moderately aluminous tholeiitic basalt, which may have been generated by hydrous fusion of previously depleted mantle. This primary magma underwent crystal fractionation under low pressure conditions, allowing the development of extensive plagioclase cumulates.The Fiskenaesset anorthosite, and similar bodies, cannot represent a cumulate residue complementary to the enclosing voluminous tonalitic gneisses, which have a calc-alkaline chemistry controlled by high pressure crystal liquid fractionation. Rather, the association between the cumulate layered complex and bordering supracrustal sequence may imply an ancient ocean crust analogue for the development of this component of Archaean high-grade terrains. It is suggested that slices of such Archaean ocean floor may be emplaced laterally into the base of the continental crust during subduction of oceanic lithosphere at Cordilleran type continental margins.  相似文献   

8.
We present detailed petrographic surveys of apatite grains in association with carbonaceous material (CM) in two banded iron formations (BIFs) from the Paleoproterozoic of Uruguay and Michigan for comparison with similar mineral associations in the highly debated Akilia Quartz-pyroxene (Qp) rock. Petrographic and Raman spectroscopic surveys of these Paleoproterozoic BIFs show that apatite grains typically occur in bands parallel to bedding and are more often associated with CM when concentrations of organic matter are high. Carbonaceous material in the Vichadero BIF from Uruguay is generally well-crystallized graphite and occurs in concentrations around 0.01 wt% with an average δ13Cgra value of −28.6 ± 4.4‰ (1σ). In this BIF, only about 5% of apatite grains are associated with graphite. In comparison, CM in the Bijiki BIF from Michigan is also graphitic, but occurs in concentrations around 2.4 wt% with δ13Cgra values around −24.0 ± 0.3‰ (1σ). In the Bijiki BIF, more than 78% of apatite grains are associated with CM. Given the geologic context and high levels of CM in the Bijiki BIF, the significantly higher proportion of apatite grains associated with CM in this rock is interpreted to represent diagenetically altered biomass and shows that such diagenetic mineral associations can survive metamorphism up to the amphibolite facies.Isotope compositions of CM in muffled acidified whole-rock powders from the Akilia Qp rock have average δ13Cgra values of −17.5 ± 2.5‰ (1σ), while δ13Ccarb values in whole-rock powders average −4.0 ± 1.0‰ (1σ). Carbon isotope compositions of graphite associated with apatite and other minerals in the Akilia Qp rock were also measured with the NanoSIMS to have similar ranges of δ13Cgra values averaging −13.8 ± 5.6‰ (1σ). The NanoSIMS was also used to semi-quantitatively map the distributions of H, N, O, P, and S in graphite from the Akilia Qp rock, and relative abundances were found to be similar for graphite associated with apatite or with hornblende, calcite, and sulfides. These analyses revealed generally lower abundances of trace elements in the Akilia graphite compared to graphite associated with apatite from Paleoproterozoic BIFs.Graphite associated with hornblende, calcite, and sulfides in the Akilia Qp rock was fluid-deposited at high-temperature from carbon-bearing fluids, and since this graphite has similar ranges of δ13Cgra values and of trace elements compared to graphite associated with apatite, we conclude that the Akilia graphite in different mineral associations formed from the same source(s) of CM. Collectively our results do not exclude a biogenic origin of the carbon in the Akilia graphite, but because some observations can not exclude graphitization of abiogenic carbon from CO2- and CH4-bearing mantle fluids, there remain ambiguities with respect to the exact origin of carbon in this ancient metasedimentary rock. Accordingly, there may have been several generations of graphite formation along with possibly varying mixtures of CO2- and CH4-bearing fluids that may have resulted in large ranges of δ13Cgra values. The possibility of fluid-deposited graphite associated with apatite should be a focus of future investigations as this may prove to be an alternative pathway of graphitization from phosphate-bearing fluids. Correlated micro-analytical approaches tested on terrestrial rocks in this work provide insights into the origin of carbon in ancient graphite and will pave the way for the search for life on other ancient planetary surfaces.  相似文献   

9.
Radiogenic isotope compositions of Hf and Nd are typically coupled in Phanerozoic and Proterozoic mafic rocks due to a similar behaviour of Lu-Hf and Sm-Nd during mantle melting. Eoarchean rocks, for instance those from southern West Greenland, exhibit an apparent decoupling of Hf and Nd isotope compositions. This apparent decoupling may either indicate metamorphic disturbance or, alternatively, mirror early differentiation processes in the silicate Earth. To evaluate the issue, we performed combined measurements of Hf-Nd isotope compositions together with major and trace element concentrations for well preserved >3720 to >3800 Ma old tholeiitic metabasalts and gabbros from the ∼3700 Ma and ∼3800 Ma old terranes of the Isua Supracrustal Belt, southern West Greenland. In contrast to younger mafic rocks, calculated initial εHf-εNd values of the Isua tholeiites show similar spreads and are both near chondritic to strongly depleted (−0.7 to +6.3 and −0.8 to +4.4, respectively), also in contrast to previously reported more depleted signatures in nearby boninite-like metabasalts of the Garbenschiefer unit. An evaluation of alteration effects based on preserved major and trace element arrays reveals pristine magmatic trends and therefore the measured isotope compositions indeed in most cases characterize contrasting Eoarchean mantle sources. In accord with this view, compositions of the Isua metabasalts yield Eoarchean regression ages in Sm-Nd and Lu-Hf isochron spaces, overlapping with emplacement ages inferred from crosscutting relationships with tonalites. Lutetium-Hf systematics of the Isua metabasalts studied here, yield clear isochron relationships. For both terranes, there is some scatter in Sm-Nd space, indicating early disturbance of the Sm-Nd system close in time to the extrusion ages, possibly by seafloor alteration. Trace element compositions of the metabasalts indicate an arc setting and a strong source overprint by melt-like subduction components. It is likely, that the source overprint may have caused partial decoupling of the εHf-εNd values, due to selective addition of Nd as observed in modern subduction settings. In this case, the most radiogenic initial εNd and εHf isotope values characterize the most depleted mantle sources, and less radiogenic values would reflect increased contributions of isotopically more enriched subduction components. However, the most depleted samples still exhibit decoupled Hf-Nd compositions, making a case for the presence of even older mantle heterogeneities. A proposed superchondritic composition of the silicate Earth (SCHEM), however, cannot account for the most depleted sample compositions. Conversely, a depleted upper mantle formed by crystallization of perovskite-rich cumulates in the early Hadean may well explain these observed compositions. A literature survey reveals an overlap in initial Hf-Nd compositions between southern West Greenland TTGs and the metabasalts analyzed here. This overlap suggests a genetic relationship between these lithologies, where the TTGs may have inherited their unusual Hf-Nd compositions from mafic precursors isotopically similar in composition to the Isua tholeiites.  相似文献   

10.
Because all known Eoarchean (>3.65 Ga) volcano-sedimentary terranes are locked in granitoid gneiss complexes that have experienced high degrees of metamorphism and deformation, the origin and mode of preservation of carbonaceous material in the oldest metasedimentary rocks remain a subject of vigorous debate. To determine the biogenicity of carbon in graphite in such rocks, carbonaceous material must be demonstrably indigenous and its composition should be consistent with thermally altered biogenic carbon as well as inconsistent with abiogenic carbon. Here we report the petrological and spectroscopic characteristics of carbonaceous material, typically associated with individual apatite grains, but also with various other minerals including calcite, in a >3.83 Ga granulite-facies ferruginous quartz-pyroxene unit (Qp rock) from the island of Akilia in southern West Greenland. In thin sections of the fine-grained parts of Akilia Qp rock sample G91-26, mapped apatites were found to be associated with graphite in about 20% of the occurrences. Raman spectra of this carbonaceous material had strong G-band and small D-band absorptions indicative of crystalline graphite. Three apatite-associated graphites were found to contain curled graphite structures, identified by an anomalously intense second-order D-band (or 2D-band) Raman mode. These structures are similar to graphite whiskers or cones documented to form at high temperatures. Raman spectra of apatite-associated graphite were consistent with formation at temperatures calculated to be between 635 and 830 °C, which are consistent with granulite-facies metamorphic conditions. Three graphite targets extracted by focused ion beam (FIB) methods contained thin graphite coatings on apatite grains rather than inclusions sensu stricto as inferred from transmitted light microscopy and Raman spectroscopy. TEM analyses of graphite in these FIB sections showed a (0 0 0 2) interplanar spacing between 3.41 and 3.64 Å for apatite-associated graphite, which is larger than the spacing of pure graphite (3.35 Å) and may be caused by the presence of non-carbon heteroatoms in interlayer sites. Samples analyzed by synchrotron-based scanning transmission X-ray microscopy (STXM) also confirmed the presence of crystalline graphite, but abundances of N and O heteroatoms were below detection limit for this method. Graphite in the Akilia Qp rock was also found to occur in complex polyphase mineral assemblages of hornblende ± calcite ± sulfides ± magnetite that point to high-temperature precipitation from carbon-bearing fluids. These complex mineral assemblages may represent another generation of graphitization that could have occurred during the amphibolite-facies metamorphic event at 2.7 Ga. Several observations point to graphitization from high-temperature fluid-deposition for some of the Akilia graphite and our results do not exclude a biogenic source of carbon in graphite associated with apatite, but ambiguities remain for the origin of this carbon.  相似文献   

11.
对巴音沟蛇绿混杂岩内发育的两套玄武岩进行了主、微量元素研究,结果表明,其中一套TiO2的含量较低,在0.81%~1.00%之间,REE含量低,LREE相对于HREE具轻微亏损,稀土元素配分图和微量元素的原始地幔标准化图上呈平坦分布型式,Nb、Ta略亏损,为大洋中脊玄武岩。结合其他微量元素特征,初步认为该玄武岩源于大洋形成的初期,源区是还没有经历大规模岩浆提取阶段的洋中脊玄武岩。另一套玄武岩则具有典型的洋岛玄武岩特征,具有较高的TiO2含量(1.89%~3.14%),富碱质,同时富集LREE和HFSE元素,高Nb、Ta含量,在微量元素原始地幔标准化图上显示明显的Nb、Ta正异常,微量地球化学元素具有EMⅡ型OIB特征。  相似文献   

12.
Native iron-bearing strongly sediment-contaminated andesitic to dacitic lavas from the Maligât Formation on Disko contain an early phenocryst assemblage of plagioclase, low-Ca pyroxene(s) and ilmenite. The phenocrystic ilmenite has reacted to form complex Fe-Ti oxide-metal-sulphide aggregates, which contain one or more of the oxides ilmenite, armalcolite and rutile. The armalcolite is very similar to the lunar type 1 armalcolite of Haggerty (1973) and approximate compositionally the ternary system FeTi2O5-MgTi2O5-Ti3O5 (92 to 97 mol.%). When evidence from several salic rocks is combined the Fe-Ti oxide-metal-sulphide aggregates display reactions which may represent one isobaric invariant assemblage (ilmenite-armalcolite-rutile-iron) and the 3 boundary univariant reactions in the system Fe-Ti-O. The compositional and textural features of ferro-magnesian silicates, oxides and metals show that most rocks were affected by a rapidly declining f O 2 during magma ascent and cooling, as displayed in the Fe-Ti oxide-metal-sulphide aggregates by the cross-cutting of one or several Tf O 2 buffer curves in the system Fe-Ti-O. Prominent sulphidation reactions are observed in the oxide aggregates and are always of the type where FeO in oxide is replaced by FeS while the liberated oxygen is consumed in a reduction process. Carbon, bound as graphite or cohenite, occurs throughout the rocks and is mostly enclosed in phenocrysts and xenocrysts. When the salic magmas ascended from pre-eruption reservoirs at 1 to 1.5 kb the reduction was largely controlled by strongly pressure-dependent carbon-oxygen equilibria resulting in rapidly declining Tf O 2 paths recorded by the oxide assemblages. In the simplified C-O gas system carbon-barometry (Sato 1979) applied to the selected rocks would indicate final equilibrium pressures of between 10 and 100 bars. The scarcity of preserved graphite in the lavas would suggest that the carbon-controlled reductions were terminated when available carbon was exhausted during the magma ascent and solidification.  相似文献   

13.
研究区内火山岩从基性—中性—中酸性都有出露,包括橄榄玄武岩、安山岩和英安岩,且都属于非碱性系列。通过对主元素和微量元素的研究,认为本区火山岩为滞后型弧(陆缘弧)火山作用的产物。源区由于存在大量的因俯冲作用进入地幔的陆壳物质以及流体的交代作用,从而出现富含金云母和不相容元素的交代富集型地幔源,并具有壳源的元素组成特征。火山岩的形成是富集地幔部分熔融的结果,但在成岩过程中可能存在单斜辉石、斜长石、橄榄石和Ti—Fe氧化物等矿物的分离结晶作用,以及橄榄石的堆晶作用。  相似文献   

14.
Partition coefficients for iron-rich olivine and pyroxene, sanidine, nepheline and apatite are reported from peralkaline trachytic to phonolitic dyke rocks and the agpaitic Ilímaussaq intrusion. Partition coefficients for many elements in olivine and pyroxene decrease with increasing peralkalinity and undersaturation of the magma, i.e. with decreasing polymerisation. The REE partition coefficients for olivine and pyroxene also show dependence on the mineral chemistry, i.e. the iron content. Probably due to the larger lattice sites in the iron end-members the heavy REEs enter the small six-coordinated lattice sites with increasing ease as the iron content of the mineral increases. La and Ce partition coefficients for apatite increase with increasing peralkalinity; this condition seems to stabilise a Na-REE-phosphate component in the mineral.  相似文献   

15.
16.
《Geochimica et cosmochimica acta》1999,63(13-14):2105-2122
We present new bulk compositional data for 6 martian meteorites, including highly siderophile elements Ni, Re, Os, Ir and Au. These and literature data are utilized for comparison versus the siderophile systematics of igneous rocks from Earth, the Moon, and the HED asteroid. The siderophile composition of ALH84001 is clearly anomalous. Whether this reflects a more reducing environment on primordial Mars when this ancient rock first crystallized, or secondary alteration, is unclear. QUE94201 shows remarkable similarity with EET79001-B for siderophile as well as lithophile elements; both are extraordinarily depleted in the “noblest” siderophiles (Os and Ir), to roughly 0.00001 × CI chondrites. As in terrestrial igneous rocks, among martian rocks Ni, Os and Ir show strong correlations vs. MgO. In the case of MgO vs. Ni, the martian trend is displaced toward lower Ni by a large factor (5), but the Os and Ir trends are not significantly displaced from their terrestrial counterparts. For Mars, Re shows a rough correlation with MgO, indicating compatible behavior, in contrast to its mildly incompatible behavior on Earth. Among martian MgO-rich rocks, Au shows a weak anticorrelation vs. MgO, resembling the terrestrial distribution except for a displacement toward 2–3 times lower Au. The same elements (Ni, Re, Os, Ir and Au) show similar correlations with Cr substituted for MgO. Data for lunar and HED rocks generally show less clear-cut trends (relatively few MgO-rich samples are available). These trends are exploited to infer the compositions of the primitive Earth, Mars, Moon and HED mantles, by assuming that the trend intercepts the bulk MgO or Cr content of the primitive mantle at the approximate primitive mantle concentration of the siderophile element. Results for Earth show good agreement with earlier estimates. For Mars, the implied primitive mantle composition is remarkably similar to the Earth’s, except for 5 times lower Ni. The best constrained of the extremely siderophile elements, Os and Ir, are present in the martian mantle at 0.005 times CI, in comparison to 0.007 times CI in Earth’s mantle. This similarity constitutes a key constraint on the style of core-mantle differentiation in both Mars and Earth. Successful models should predict similarly high concentrations of noble siderophile elements in both the martian and terrestrial mantles (“high” compared to the lunar and HED mantles, and to models of simple partitioning at typical low-pressure magmatic temperatures), but only predict high Ni for the Earth’s mantle. Models that engender the noble siderophile excess in Earth’s mantle through a uniquely terrestrial process, such as a Moon-forming giant impact, have difficulty explaining the similarity of outcome (except for Ni) on Mars. The high Ni content of the terrestrial mantle is probably an effect traceable to Earth’s size. For the more highly siderophile elements like Os and Ir, the simplest model consistent with available constraints is the veneer hypothesis. Core-mantle differentiation was notably inefficient on the largest terrestrial planets, because during the final ∼ 1% of accretion these bodies acquired sufficient H2O to oxidize most of the later-accreting Fe-metal, thus eliminating the carrier phase for segregation of siderophile elements into the core.  相似文献   

17.
《Precambrian Research》2001,105(2-4):165-181
In the Palaeoproterozoic Nagssugtoqidian orogen of West Greenland reworked Archaean and juvenile Proterozoic orthogneisses occur side by side and are difficult to differentiate in the field. Archaean gneisses have tonalitic to trondhjemitic compositions with relatively low Al2O3 and Sr, and may have been derived from magmas formed by melting of basaltic or amphibolitic rocks at moderate pressures. The Proterozoic rocks are on average more mafic, and it is likely that they crystallised from mantle-derived magmas. Felsic varieties of the Proterozoic igneous suite probably formed from the original magma by fractional crystallisation, in which hornblende played an important role, and at SiO2 > 65% Archaean and Proterozoic rocks have very similar major and trace element compositions (including REE), illustrating that different modes of origin may lead to very similar results.  相似文献   

18.
Hf isotopic data of minerals in a mafic pyroxene granulite from the southern Bohemian Massif, together with their major and trace element composition and petrological observations were used to decipher the metamorphic history and behaviour of zircon in the granulite. The Hf isotopic composition in the minerals was used to estimate whether the decompression reaction, namely the consumption of garnet and rutile, could have provided Zr for the formation of newly grown metamorphic zircon. The age of the decompression reaction indicated by the evolution of Hf isotopes in garnet and orthopyroxene is between 333 and 331 Ma, i.e. ca. 7 Ma younger than the available U–Pb zircon ages from the Moldanubian granulites and than the newly obtained 343 ± 2 Ma laser ablation ICP-MS U–Pb age of zircons. The combination of bulk and in-situ Hf isotopic data, major and trace element composition and petrological modeling of P–T evolution revealed that the formation of zircons can not be related to the decompression phase of the evolution of the mafic granulites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Anomalous enrichments of Zr (>500 ppm), Zn (> 100 ppm), Nb (>25 ppm), Y (>60 ppm), Th (>20 pm), U (> 5 ppm), LREE (>230 ppm) and HREE (>35ppm), and high Rb/Sr (>5) characterize peralkaline granites, in contrast to their peraluminous and calc-alkaline equivalents. Within the peralkaline suite, comenditic and pantelleritic volcanics exhibit two- to five-fold increases in the concentrations of these trace elements over comagmatic granites. These cannot be explained by crystal- liquid fractionation processes, and require the evolution of a sodium-enriched fluid. Corresponding trace element increases in the granites in areas of alkali metasomatism support this argument, and reflect the partial confinement of this volatile phase within the high-level magma chambers. REE studies in particular might eventually allow an evaluation of the role of Cl versus F and CO3-complexing in the evolution of the volatile fluid.  相似文献   

20.
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号