首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Good thermal stability in lead-free BaTiO3 ceramics is important for their applications above room temperature. In this study, thermal stable piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 ceramics was enhanced by tailoring their phase transition behaviors. Comparison between (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 and (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 revealed that latter system at y?=?0.80 had much better thermal stable piezoelectric coefficient than the former at x?=?0.45. Both systems crystalized in tetragonal to orthorhombic phase boundary at room temperature. The phase transition temperature and degree of diffusion were adjusted by Ca and Zr ions contents and demonstrated great influence on temperature dependent dielectric permittivity, hysteresis loops, and in-situ domain structures. The improved thermal stability of (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 prepared at y?=?0.80 was linked to its higher paraelectric to ferroelectric phase transition temperature (Tm?=?115.7?°C) and less degree of diffusion (degree of diffusion constant γ?=?1.35). By comparison, (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 prepared at x?=?0.45 revealed Tm?=?81.3?°C and γ?=?1.65. Overall, these findings look promising for future stimulation of phase transition behaviors and design of piezoelectric materials with good thermal stabilities.  相似文献   

2.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

3.
Synthesis of a new magnetoelectric [(1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3xCoFe2O4] (weight fraction x=0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) ceramic particulate composites with its structural characterization and magneto‐electric properties have been reported here in this study. Lead free piezoelectric (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 (BCZT) and ferrimagnetic CoFe2O4 (CFO) were synthesized using sol‐gel and combustion methods respectively. (1?x)BCZT‐xCFO magnetoelectric composites were then synthesized by mixing of the calcined individual ferroic phases with required weight fractions. Powder X‐ray diffraction studies indicate the coexistence of BCZT and CFO phases in the composites sintered at 1300°C. 0.5BCZT‐0.5CFO composite showed high strain sensitivity (dλ/dH) of 52×10?9 Oe?1, which is comparable to that of pure CFO (50×10?9 Oe?1). A high piezoelectric voltage constant (g33) of 8×10?3 V m/N was measured for 0.8BCZT‐0.2CFO sample. All the composites showed magnetoelectric effect and a high magnetoelectric coupling coefficient (αME) of 6.85 mV/cm Oe was measured for 0.5BCZT‐0.5CFO composite at 1 kHz and a large ME coefficient of 115 mV/cm Oe at its resonance frequency. The effect of microstructure on the magnetoelectric properties of [(1?x)BCZT‐(x)CFO] composites has been studied and reported here as a function of its piezoelectric (BCZT)/ferrite (CoFe2O4) content.  相似文献   

4.
High piezoelectric properties are desired for lead‐free piezoelectric materials in consideration as a replacement for lead‐based materials in applications. Due to the high piezoelectric coefficient, (Ba100?xCax) (Ti100?yZry) O3 (BCTZ) piezoelectric ceramics have been considered as a promising lead‐free alternate piezoelectric material. Here, six compositions were selected based on a prediction that all the compositions would have high piezoelectric coefficient at room temperature. The results confirmed all compositions exhibit well developed hysteresis loops and a large piezoelectric coefficient at room temperature. This is due to the coexistence of several phases where the major phase is likely to be orthorhombic and the second phase is proposed to be tetragonal. The phase transition was found to occur over a broad temperature range instead of at a specific temperature only. A relationship between the tetragonal–orthorhombic phase transition temperature and Ca2+ and Zr4+ content was proposed. This enables clear determination of BCTZ compositions with high piezoelectric coefficient at a desired operation temperature.  相似文献   

5.
《Ceramics International》2016,42(16):18037-18044
Lead-free Cu2+-modified (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCZT−xCu2+) piezoelectric ceramics was synthesized by sol-gel method. The effects of Cu2+ additions on sintering characteristics, the phase structure, microstructure, electrical properties and complex impedance characteristic were investigated systematically. The XRD patterns exhibited a pure perovskite structure without impurity phase in all samples. SEM micrographs, temperature dependence of dielectric constant and polarization-electric field (P-E) hysteresis loops indicated that a small amount of Cu2+ addition affected the properties obviously. The results revealed that the addition of Cu2+ significantly improved the sinterability of BCZT ceramics which resulted in a reduction of sintering temperature from 1440 °C to 1230 °C. The TG-DSC was analyzed to verify the reaction process of BCZT−Cu2+ materials. (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics with x=0.020 Cu2+ exhibited good electrical properties: εm=12,112, Tc=360 K, εr=2614, tan δ=0.026, Kp=0.47 and d33=382 pC/N. The results indicated that Cu2+-modified BCZT ceramics could be a promising candidate for commercial purposes.  相似文献   

6.
Ba0.85Ca0.15(Ti0.9Zr0.1)1-xFexO3 (x = 0, 0.5, and 1%) ceramics were studied for piezocatalysis, photocatalysis, and pyrocatalysis using dye degradation in the simulated wastewater. The effect of electrical poling was also performed and found a significant impact of poling on all three catalytic reactions. Fe decreased the optical bandgap of Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZTO) to the visible region. Bandgap for x = 0, 0.005, and 0.01 was found to be 3.14 eV, 2.75 eV, and 2.61 eV, respectively. Interestingly, visible light photocatalytic activity was observed after Fe inclusion in BCZTO lattice. These compositions have also demonstrated dye degradation under ultrasonication (piezocatalytsis) and during temporal temperature change (pyrocatalysis). Results indicate promising multicatalysis in BCZTO ceramics which can be tuned using Fe substitution.  相似文献   

7.
The (1?x)(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3?xBi(Mg0.5Ti0.5)O3 [(1?x)BCZT–xBMT, x=0.1–0.7] lead-free solid solution ceramics were prepared by the conventional mixed oxide method. The phase structure was investigated by X-ray diffraction and results show that a single perovskite phase was obtained in all of these samples, suggesting that the added BMT diffused into BCZT to form a solid solution. Dense ceramics with relative densities >95% were obtained, and a small amount of BMT (≤50 mol%) acted as grain growth promoter, had an evident effect on grain size growth. Further increase of the BMT content inhibited the grain growth of BCZT samples. Temperature dependence of the dielectric properties showed that all the BCZT–BMT solid solution ceramics exhibited relaxor-like characteristics. With increasing BMT content, the Curie temperature was first increased and then decreased, giving a maximum value of 218 °C for the 0.4BCZT–0.6BMT composition. Furthermore, stable dielectric constants and low losses were obtained with 0.5≤x≤0.7 in the wide temperature range, indicating that the system possess potential for high-temperature application.  相似文献   

8.
《Ceramics International》2022,48(14):19954-19962
Lead-free (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)(Zr0.8Ti0.2)O3 ceramics (abbreviated as (1-x)KNNS-xBNZT, x = 0, 0.01, 0.02, 0.03, 0.035 and 0.04) were synthesized by the solid-state method, and the dependence of phase evolution, microstructure, oxygen vacancy defect and electrical properties on compositions were carefully investigated. All ceramics had a pure perovskite structure and a dense microstructure. The phase transition temperatures (TR-O and TO-T) of the ceramics were adjusted by adding BNZT, and the rhombohedral-tetragonal (R-T) phase coexistence boundary was successfully constructed at room temperature when x = 0.03, the excellent piezoelectric performance (d33 ~ 323 pC/N, kp ~ 0.372) and high Curie temperature (TC ~ 276 °C) have been achieved at this time. The grain size of the ceramics showed a strong difference on x content, and the maximum relative density value of 95.42% was obtained. The domain structure characterized by PFM confirmed that the ceramics possess small-sized nano-domains and complex domains at x = 0.03, which are the origin of enhanced piezoelectric properties. Moreover, the oxygen vacancy defect that can pin the domain walls was increased with the addition of (Bi0.5Na0.5)(Zr0.8Ti0.2)O3. As a result, the doping with BNZT can significantly affect the phase structure and electrical properties of the ceramics, indicating that the (1-x)KNNS-xBNZT ceramics system with a R-T phase boundary is a promising lead-free piezoelectric material.  相似文献   

9.
Piezoelectric ceramics with large energy density coefficient d33·g33 value have been found suitable for piezoelectric energy harvesting applications. In this study, the phase structures and piezoelectric properties of xPb(Zr0.5Ti0.5)O3?yPb(Zn1/3Nb2/3)O3?(1?x?y)Pb(Ni1/3Nb2/3)O3 (xPZT?yPZN?(1?x?y)PNN) ceramic were investigated with systematically varying PZN and PNN components. The ternary phase diagram of PZT?PZN?PNN system was illustrated and the composition region of morphotropic phase boundary (MPB) was determined. Piezoelectric and dielectric measurements verify that the materials in MPB region all present large d33 and d33·g33 values. In particular, very high d33·g33 coefficients of 20162.2 × 10?15 m2/N and 21026.3 × 10?15 m2/N are observed from samples 0.75PZT?0.15PZN?0.1PNN and 0.8PZT?0.05PZN?0.15PNN with compositions located on the rhombohedral phase side near MPB because the dielectric coefficient ε33T0 decreases faster than the d33 coefficient at this side.  相似文献   

10.
The role of Pr6O11 addition on the structure, microstructure, electrical, and electromechanical properties of lead‐free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 piezoelectric ceramics has been systemically investigated. Addition of praseodymium (Pr) results in improved ferroelectric and piezoelectric properties. XRD analysis revealed the co‐existence of rhombohedral (R) and tetragonal (T) phases at room temperature. High remanent polarization values (2Pr ~17 μC/cm2) and loop squareness of nearly 0.87 were obtained for the BCZT‐0.04 wt%Pr ceramic, along with high piezoelectric coefficient (d33 = 435 pC/N) and transduction coefficient [(d33·g33) = 11589 × 10?15 m2/N]. Results are correlated with the crystal structure and microstructure that significantly influence the ferroelectric and piezoelectric properties near the RT phase transition point. This material seems to be especially suitable for energy harvesting applications, exhibiting outstanding figure of merit.  相似文献   

11.
The phase transitions in (1−x)BaZr0.2Ti0.8O3xBa0.7Ca0.3TiO3 (BZT-xBCT) powders and ceramic pellets were studied. It is found that the phase compositions in the pellets are different from that in the powders, which may be caused by the stress in the pellets. The monoclinic phase exists near the morphotropic phase boundary (MPB) in the ceramics. The piezoelectric coefficient (d33) measurement of the ceramics shows that the higher piezoelectric properties are corresponding to higher content of monoclinic phase.  相似文献   

12.
This study investigated the phase transition behavior and electrical properties of (K0.5Na0.5)(Nb1-xZrx)O3 (KNN?100xZ) and (K0.5Na0.5)NbO3yBaZrO3 (KNN–100yBZ) lead–free piezoelectric ceramics. The phase transitions in crystal structures were compared in KNN ceramics between single Zr4+ doping and Ba2+Zr4+ co?doping. Piezoelectric properties such as the piezoelectric constant (d33) and electromechanical coupling factor (kp) are optimized for KNN?6BZ ceramics and were clarified via the polymorphic phase transition from the orthorhombic to pseudocubic phase. The fitted degree of diffuseness (γ) for a phase transition from the modified Curie–Weiss law indicated that KNN ceramics as ferroelectrics are gradually transformed through BaZrO3 modification. Accordingly, the enhanced strain properties at y = 0.08 consist of coexisting ferroelectric domains and polar nanoregions that are supported by ferroelectric–to–relaxor crossover in KNN?100BZ ceramics.  相似文献   

13.
Large piezoelectric effect is achieved in Li‐doped Ba0.85Ca0.15Ti0.90Zr0.10O3(BCTZ) ceramics by use of tuning the phase boundaries. Rhombohedral–orthorhombic (R–O) and orthorhombic–tetragonal (O–T) multiphase coexistence is constructed in the ceramics by changing Li contents. The high piezoelectric constant d33 (493 pC/N) and large electrostrain (dSmax/dEmax = 931 pm/V) have been observed in the Li‐doped (Ba, Ca)(Ti, Zr)O3 ceramics at low sintering temperature (1350°C/2 h). The significant enhancement in materials properties is ascribed to the multiphase region around room temperature induced by Li‐doped effect.  相似文献   

14.
BaTiO3 (BT)-based ceramics usually exhibit superior quasi-static piezoelectric response but relatively low electrostrain, which limits their actuator applications. In this study, lead-free (Ba0.835+xCa0.165-x)(Ti0.91Zr0.09)O3 (x = 0–0.06) (BaxCTZ) ceramics with the compositions close to the tetragonal (T)-rich side of orthorhombic (O)-T polymorphic phase boundary (PPB) were reported to exhibit a field insensitive giant dynamic piezoelectric response (d33* >1050 pm/V) over a wide electric field range up to 2 kV/mm, resulting in the large strain value of ∼0.21 %. Detailed structural investigations combined with various electrical properties measurements reveal that the superior dynamic piezoelectric response is attributed to the combination of piezoelectric effect and domain switching behavior due to the chemical modulated O-T PPB, and the field induced partially irreversible T-O phase transition. The results demonstrate that the studied compositions have great potential for applications of lead-free actuator piezoceramics.  相似文献   

15.
In this study, lead-free (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 compositions are synthesized via conventional solid oxide route, and the ceramics are fabricated with normal sintering in air. The effects of composition fluctuations on dielectric, piezoelectric, and mechanical properties are investigated. The phase structure and the microstructure are analyzed with X-ray diffraction and scanning electron microscopy. The best dielectric and piezoelectric properties of εr = 11 207 and d33 = 330 pC/N were obtained for BZT−0.35BCT and BZT−0.5BCT ceramics, respectively. The mechanical behavior—in terms of Vickers hardness and compressive and flexural strengths—was investigated, and the best mechanical behavior was found in the vicinity of the phase transition boundary with x values between 0.5 and 0.6.  相似文献   

16.
《Ceramics International》2022,48(11):15152-15164
This work aims to upgrade the comprehensive electrical properties of BaTiO3-based ceramics (1-x)[(Ba0.94Ca0.06)(Ti0.92Sn0.08)]-xSm2O3-0.06 mol% GeO2 [abbreviated as (1-x)BCTS-xSm-0.06G]. First, piezoceramics were synthesized via a conventional solid-state method. Next, the phase structures, surface topographies, ferroelectric domains were evaluated using XRD, XRD Rietveld refinements, SEM, OP-PFM, TEM. The results demonstrate that all the ceramics possess an orthorhombic-tetragonal (O-T) phase when at room temperature. Significantly, optimized piezoelectricity is gained at x = 0.03 mol% (piezoelectric constant of d33 = 630 ± 20 pC/N and planar electromechanical coupling factor of kp = 61%). The ferroelectric domains of ceramics were examined using OP-PFM and TEM, which ulteriorly indicate that the favorable piezoelectricity is attributed to the coexistence of the O-T phase boundary and the subdued energy density of the domain wall. Furthermore, all the ceramics are confirmed to be relaxor ferroelectrics, with the relaxor degree increasing with the increasing content of Sm2O3.  相似文献   

17.
The lead‐free ceramics with nominal composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 (BCTZ) were prepared by a conventional solid‐state reaction combined with a liquid precursor mixing method. Structural, dielectric, piezoelectric, and ferroelectric properties of the ceramics were systematically investigated. Excellent electrical properties of Tc ~ 101°C, tanδ ~ (0.003–0.05), kp ~ 0.46, d33 ~ 560 pC/N, Ps ~17 μC/cm2 and a large strain of 0.43% were reproducibly obtained for the BCTZ ceramics. In addition, BCTZ‐based monolithic multilayer piezoelectric actuators were successfully fabricated by alternately laminating the claimed piezoelectric ceramics and internal‐binder. The actuators show large displacements under low driven voltage. These results highlight that the BCTZ ceramics are excellent candidate for multilayer piezoelectric devices.  相似文献   

18.
Lead-free ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 stands out among environmentally friendly alternatives to commercial Pb(Zr,Ti)O3 piezoceramics for its large piezoelectric coefficients, and it is especially suitable for applications in which thermal depoling is not an issue like bio-implanted devices. However, ceramic processing by conventional means consistently results in exaggerated grain growth, which compromises reliability and has prevented its transfer to industry. We report here the application of high-energy milling for the mechanosynthesis of nanocrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 powders with enhanced reactivity, and to the control of grain growth during ceramic processing to obtain materials with tailored microstructures and decreasing grain sizes down to the sub-10 µm range. Characterization of the electrical and electromechanical properties was accomplished and uncovered triggering of a new mechanism for very large strain under electric field in fine-grained ceramics. Process optimization by precursor selection and preliminary up-scaling studies are also presented.  相似文献   

19.
To develop high-performance piezo-/ferroelectric materials, Bi(Zn½Ti½)O3–PbZrO3–PbTiO3 (BZT–PZ–PT) ternary solid solution with compositions around the morphotropic phase boundary (MPB) is synthesized by solid-state reaction. The crystal structure and electric properties are investigated systematically by X-ray powder diffraction (XRD), dielectric spectroscopy, and ferroelectric and piezoelectric measurements. On the basis of the results of the XRD, dielectric and ferroelectric measurements, the pseudo-binary phase diagram of the yBi(Zn½Ti½)O3–(1 − y)[(1 − x)PbZrO3xPbTiO3] system has been constructed for three series, namely, y = 0.05, 0.10, and 0.15. It is found that the introduction of BZT into the PZT system makes the paraelectric to ferroelectric phase transition more diffuse, brings the MPB to a lower PT content, and enlarges the MPB region. The best properties with an improved dielectric constant ε' = 1248, and a large remnant polarization Pr = 33 μC/cm2, as well as a relatively high TC = 286°C, and a high coercive field Ec = 23 kV/cm was achieved in the y = 0.15 series with MPB composition x = 0.425, making it a promising material for high-power piezoelectric applications.  相似文献   

20.
Pr3+‐doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)TiO3 ceramics were prepared by a solid‐state reaction method. The effects of doping concentration, sintering temperature, and ferroelectric remanent polarization on photoluminescence (PL) properties of samples were systematically investigated. The PL spectra of samples exhibit strong green and red emissions with a broad blue excitation band ranging from 430 to 500 nm, in a good agreement with all commercial blue LEDs emission wavelength. Except for the concentration and temperature PL quenching, the polarization‐induced PL quenching was obviously observed, and the degree of PL quenching changes with Pr3+ concentrations, the origin of the change is well interpreted by field‐induced structural phase transitions between rhombohedral (R3m) and tetragonal (P4mm) for BCZT: xPr ceramics near the morphotropic phase boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号