首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
助剂铬对Ni/MgO催化剂CVD法制备碳纳米管的促进作用   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了助剂Cr改性的Ni/MgO催化剂, 用化学气相沉积(CVD)法在600 ℃下裂解甲烷生长碳纳米管, 研究了助剂Cr的引入对催化剂微结构和制备碳纳米管性能的影响. 催化剂样品用XRD, TPR和CO-TPD进行了分析, 制备的碳纳米管用TEM和XRD进行了表征. 实验结果表明, NiO和MgO之间存在着强相互作用而形成固溶体, Ni/MgO催化剂经氢气处理后其中的镍氧化物只有极少部分被还原成为镍. 助剂铬的引入明显促进了镍的还原, 使得催化剂表面的Ni活性中心数增多, 从而使催化剂的活性和性能得到了明显的改进. 在加入助剂后碳纳米管的产率明显增加, 当Cr质量分数为8%时, 碳纳米管的产量为未加助剂时产量的5倍, 碳纳米管和催化剂的质量比达到1928. 当Cr含量进一步增加时, Ni在催剂表面聚集形成大颗粒, 制备出的产品中含有大量的碳纳米纤维和无定形碳. 以8%Cr-Ni/MgO催化剂合成的碳纳米管具有比较高的产率且质量较好.  相似文献   

2.
催化剂对纳米聚团床法制备的纳米碳材料形貌的影响   总被引:3,自引:0,他引:3  
 在纳米聚团床中用催化化学气相沉积法批量制备了碳纳米管,研\r\n究了过渡金属催化剂对碳纳米管形貌和产量的影响.实验结果表明,含\r\n铁催化剂的活性较低,产率较低,但产品质量较好;含镍催化剂的活性\r\n较高,产率较高,但产品质量较差;在钴催化剂作用下发现了一种新型\r\n的针状纳米碳材料.用含载体较少的铁催化剂可以得到纯度较高且微观\r\n结构较好的碳纳米管,但产率较低;不含任何载体的纯镍催化剂则不能\r\n得到碳纳米管.适宜的催化剂组成、催化剂活性点的均匀分布和裂解速\r\n度的控制等构成了纳米聚团床大批量制备碳纳米管技术的关键.  相似文献   

3.
以柠檬酸法制备的Fe-MgO、Co-MgO和Ni-MgO为催化剂,CH4为碳源气,H2为还原气,在873、973和1073 K制备出碳纳米管,通过TEM和拉曼光谱表征,讨论了催化剂、制备温度、反应时间等因素对碳纳米管形貌、产率和内部结构的影响.结果表明:不同的催化剂在相同的温度下制备的碳纳米管的形态和内部结构有很大的差异.其中Fe-MgO催化剂制备的碳纳米管管径粗,且大小不均匀,而Ni-MgO催化剂制备的碳纳米管管径较细、较均匀.碳纳米管的产率随着裂解温度的变化而改变.Fe-MgO催化剂制备碳纳米管的产率随制备温度的升高而提高,而Ni-MgO催化剂制备碳纳米管的产率随制备温度的升高而降低.Fe-MgO催化剂制备碳纳米管,在1073K甚至更高的制备温度才能达到其最高产率.Co-MgO催化剂制备碳纳米管的产率在973 K左右产率较高,而用Ni-MgO催化剂制备碳纳米管,则在873 K甚至更低的制备温度就能达到最高产率.反应时间与碳纳米管的产率不成正比,有一最佳反应时间,如Ni-MgO催化剂的最佳反应时间为2 h.  相似文献   

4.
催化剂活性组分的负载方法对CVD法制备碳纳米管的影响   总被引:3,自引:0,他引:3  
催化剂是影响CVD法制备碳纳米管的主要因素。本文报道了用配合浸渍法制备的催化剂在碳纳米管制备中的应用。XRD和TEM研究表明:与普通浸渍法制备的催化剂(B-Co/SiO2)相比,用配合浸渍法制备的催化剂(A-Co/SiO2)颗粒小,金属分散度高,生成碳纳米管的温度低。对于配合浸渍法制备的催化剂(A-Co/SiO2),低温(650-750℃)有利于生成直径小且管径均匀的碳纳米管;高温(800-900℃)容易生成直径大且层数多的碳纳米管或碳纳米棒。  相似文献   

5.
刘霁欣  任钊  谢有畅 《催化学报》2004,25(7):561-570
 采用“柠檬酸法”制备的W-Fe-MgO催化剂,在小型流化床反应器中分别以Ar和H2为载气在1073~1373 K下催化甲烷分解制单壁碳纳米管(SWCNTs). 实验结果表明,用H2作载气制备SWCNTs的最佳温度为1373 K,在Fe∶Mg摩尔比≤10∶100时,催化剂上的碳产率随其W载量的增加而显著增大,产物中的SWCNTs含量也保持在较高水平,最高碳产率可达55%(相对于催化剂的质量分数). 而使用Ar载气时最佳反应温度为1073 K, 用W∶Mg摩尔比为1∶100的催化剂可制得SWCNTs含量较高的产物,而W∶Mg摩尔比超过1∶100的催化剂上产物中的SWCNTs含量显著下降. 根据XRD和XPS实验结果推测了W-Fe-MgO催化剂上生长SWCNTs的活性相.  相似文献   

6.
本文综述了溶剂热法合成多种碳纳米管、纳米电缆、纳米棒、纳米球和纳米空心锥的研究现状。350 ℃下用金属钾还原六氯代苯,在用不同催化剂时,可分别得到碳纳米管和碳球,碳球的形成可以解释为石墨层的微条卷曲而成。600 ℃下金属镁还原乙醇得到了竹节状和Y-型碳纳米管。500 ℃下还原四氯化碳和碳酸钠可得到平均直径为100 nm的碳纳米管。700 ℃下金属锌还原乙醚制成了左右螺旋型交织的碳纳米管。在硫的存在下,200 ℃以下二茂铁热解成非晶碳纳米管和Fe/非晶碳纳米同轴电缆。  相似文献   

7.
研究了n型金刚石薄膜作为催化剂生长碳纳米管的方法.首先采用丙酮裂解化学气相沉积(CVD)法制备均匀的n型金刚石薄膜,然后采用乙醇为碳源的CVD法,在850、900和950℃下,分别在n型金刚石薄膜上制备了碳球、竹节状碳管和多壁碳纳米管.所得产物用扫描电子显微镜、透射电子显微镜、拉曼光谱和X射线光电子能谱表征.实验结果表明产物的形貌与反应温度有关.我们还提出了与金刚石催化生长碳纳米管结果相符的实验机理.  相似文献   

8.
用真空高温炉对在纳米聚团流化床中用催化裂解法大批量制备的多壁碳纳米管进行了1500~2150℃的真空高温处理,并用高分辨透射电镜、激光拉曼、X射线晶体衍射及热重分析表征热处理效果.结果证明,高温处理对碳纳米管具有显著的整形作用,激光拉曼光谱可以有效地表征高温整形效果,但是管壁的大缺陷很难得到修复.经过1800℃处理以后,碳纳米管中的金属催化剂和载体得到有效去除,产品纯度高达99%以上.  相似文献   

9.
通过反向化学共沉淀法制备PrxCe1-xO2-δ稀土纳米复合氧化物作为助催化掺杂剂,将其包覆在多壁碳纳米管(MWCNTs)的表面作为催化剂复合载体,然后使用了柠檬酸盐-KBH4液相还原法制备了粒径分布均匀、性质稳定的Pt纳米溶胶,并沉积在上述载体中得到负载型Pt-PrxCe1-xO2-δ/CNT复合电催化剂,制备的催化剂中Pt载量为20%(质量分数).使用XRD,SEM等手段对催化剂样品进行了物相形貌表征.使用循环伏安法对催化剂的电化学性能进行了测试.结果表明,经Pr,Ce纳米复合氧化物掺杂的催化剂比传统Pt/CNT催化荆具有更低的甲醇氧化电位和更好的耐中间产物毒化能力.  相似文献   

10.
用1,4-丁二醇作为络合沉淀剂,通过再结晶活化法将晶型混乱并具有晶格缺陷的纳米级MgCl2晶粒均匀分散在硅胶表面,形成结构化纳米载体.将此载体用于负载TiCl4得到结构化纳米Ziegler-Natta催化剂.研究了醇镁比对载体形貌的影响,以及结构化纳米催化剂用于乙烯聚合的催化特性和产物特点.乙烯淤浆高压聚合结果表明结构化纳米Ziegler-Natta催化剂可用于制备超高分子量聚乙烯,并且温度对催化剂活性和聚乙烯产物的分子量都有很大的影响,在实验条件下催化剂活性可达到1261 kg PE.(molTi)-1.h-1.10-5Pa-1,超高分子量聚乙烯的黏均分子量可达到5.87×106.SEM、DSC和粒径分析等结果表明,结构化纳米催化剂制备的聚乙烯产物结晶度高,在实验考察条件下最高可达到49.5%,而且产物形貌规整,接近球形,平均粒径在68~69μm之间,利于后续的生产加工.  相似文献   

11.
通过向两种金属酞菁的混合物添加一定量的硫粉,在800~950 ℃裂解合成了大面积的直立碳纳米管。采用场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)和拉曼光谱对产物进行了观察和表征,结果显示:所合成的碳纳米管(直径为15~35 nm,长度为200~800 nm)管身平直,具有很好的石墨化程度,且杂质很少。采用两种金属酞菁((M(Ⅱ)Pc, M=Fe, Co))进行混合裂解时,既可以提供碳源,而且可以产生相当均匀的催化剂颗粒,有利直立碳纳米管的沉积。这种将两种酞菁进行固相混合裂解的方法,相当安全高效,有利于大规模生产直立碳纳米管。  相似文献   

12.
A novel in situ approach to mass fabrication of carbon nanotubes was reported. Composites of polypropylene (PP)/organomontmorillonite (OMMT)/nickel formate (NF) were prepared by mixing these components in a Brabender mixer at an elevated temperature. Chestnut-like carbon nanotube (CNT) spheres were in situ fabricated in high yields by heating the PP/OMMT/NF composites at 900 degrees C without adding any additional pre-synthesized nickel nanocatalysts. The products were studied by X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and N2 adsorption-desorption measurements. The results showed that nickel nanoparticles were in situ produced, which catalyzed the formation of multiwalled carbon nanotubes (MWNTs) in an autoclave-like microreactor formed by OMMT. These in situ formed nickel nanoparticles were found to be more catalytically active than pre-synthesized nickel nanocatalysts, resulting in higher yields of CNTs. The obtained CNT spheres have a high surface area, which makes them a good catalyst support. Loading of metal nanoparticles was preliminarily tried, and Pt nanoparticles of ca. 2.65 nm in size were successfully deposited on CNTs. The applications of these nanocatalysts in chemical reactions are currently being studied in our laboratory.  相似文献   

13.
采用溶胶凝胶法合成的Ni-Mo双金属氧化物催化剂,用CVD法催化裂解甲烷从而大量制备高质量高纯度的成束多壁纳米碳管.实验结果表明,该催化剂具有很高的活性和催化效率.反应2 h后,制备的多壁纳米碳管的量可达到初始催化剂量的80倍以上.碳管的直径较均匀,在10~20 nm之间.随着反应时间的延长,制备的纳米碳管石墨化程度增加,反应1 h后,粗产品中纳米碳管的含量就超过了97%. 简单放大后,单炉每克催化剂可以在0.5 h内制得40 g以上多壁纳米碳管.  相似文献   

14.
A new solution-phase method for synthesis of metal nanoparticles–carbon nanotubes (CNTs) assemblies is described. By injection of CNTs solution into the diethyl ether/aqueous solution of metal salt biphasic mixture, metal (Ag, Au, Pd, and Pt) nanoparticles–decorated CNTs composite materials can be prepared. Metal nanoparticles have spontaneously and selectively formed on the sidewalls of CNTs through redox reaction between CNTs and metal ions. This phenomenon has been probed by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, and Raman spectroscopy.  相似文献   

15.
Unbranched and branched carbon nanotubes (CNTs) were synthesized by catalytic chemical vapor deposition from methane at 900 °C over a Cu/MgO catalyst. Morphology and structure of the CNTs were characterized by scanning and transmission electron microscopy, and Raman spectroscopy. The effect of methane flow rate on the CNT growth was investigated. The results suggest that the products were transformed from unbranched to branched CNTs with an increase in methane flow rate. The simplicity and controllability of such a preparation technique make it a promising method to synthesize different carbon nanotube structures.  相似文献   

16.
Summary: We report mass production of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) with relatively high length and aspect ratio. We synthesized carbon nanomaterials by chemical vapor deposition (CVD) of methane as the feeding gas on Fe/Mo nanoparticles that use alumina-aerogel support. Alumina-aerogel-supported Fe/Mo catalyst was prepared using sol-gel. Drying step performed using rotary evaporation and freeze-drying. CVD was performed using a quartz tube furnace. Samples were analyzed using scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Raman spectroscopy.  相似文献   

17.
曹永  赵芸  矫庆泽 《应用化学》2010,27(4):445-448
分别以具有相似Fe、Co、Ni含量的层状双金属氢氧化物(LDHs)为催化剂前体,用化学气相沉积的方法生长碳纳米管(CNTs)。 催化剂由LDHs焙烧还原得到。 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及拉曼光谱(Raman)测试技术对LDHs及其焙烧产物的结构、CNTs的形貌和结构进行了研究。 结果表明,3种催化剂生长的CNTs均为多壁结构;其中Co催化剂活性较低,生长CNTs的管径较细、石墨化程度较高;Ni催化剂的活性较高,生长CNTs的密度较大、管壁较厚、石墨化程度较差;Fe催化剂的活性介于Co和Ni之间。 催化剂活性及CNTs的密度可以由生长CNTs的结构来解释。  相似文献   

18.
分别以具有相似Fe、Co、Ni含量的层状双金属氢氧化物(LDHs)为催化剂前体,用化学气相沉积的方法生长碳纳米管(CNTs).催化剂由LDHs焙烧还原得到.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及拉曼光谱(Raman)测试技术对LDHs及其焙烧产物的结构、CNTs的形貌和结构进行了研究.结果表明,3种催化剂生长的CNTs均为多壁结构;其中Co催化剂活性较低,生长CNTs的管径较细、石墨化程度较高;Ni催化剂的活性较高,生长CNTs的密度较大、管壁较厚、石墨化程度较差;Fe催化剂的活性介于Co和Ni之间.催化剂活性及CNTs的密度可以由生长CNTs的结构来解释.  相似文献   

19.
The functions and structures of Mo/Ni/MgO catalysts in the synthesis of carbon nanotubes (CNTs) have been investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Thin 2-5-walled CNTs with high purities (over 90%) have been successfully synthesized by catalytic decomposition of CH(4) over Mo/Ni/MgO catalysts at 1073 K. It has been found that the yield of CNTs as well as the outer diameter or thickness correlates well with the contents of these three elements. The three components Mo, Ni, and MgO are all necessary to synthesize the thin CNTs at high yields since no catalytic activity was observed for CNT synthesis when one of these components was not present. The outer diameter of the CNTs increases from 4 to 13 nm and the thickness of graphene layers also increases with increasing Mo content at a fixed Ni content, while the inner diameter stays at 2-3 nm regardless of their contents. Furthermore, the average outer diameter is in good agreement with the average particle size of metal catalyst. That is, the thickness or the outer diameter can be controlled by selecting the composition of the Mo/Ni/MgO catalysts. XRD analyses have shown that Mo and Ni form a Mo-Ni alloy before CNT synthesis, while the Mo-Ni alloy phase is separated into Mo carbide and Ni. These alloy particles are supported on MgO cubic particles 15-20 nm in width. It has been found that only small Mo-Ni alloy particles 2-16 nm in size catalyze CNT synthesis, with larger particles over 15 nm exhibiting no activity. Mo carbide and Ni should play different roles in the synthesis of the thin CNTs, in which Ni is responsible for the dissociation of CH(4) into carbon and Mo(2)C works as a carbon reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号