首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
盆栽试验以宽叶泽苔草(Caldesia grandis Samuelsson)为材料,采用500 μmol·L-1 Cd、500 μmol·L-1Cr、500 μmol·L-1 Pb、1 000 μmol·L-1 Cu溶液处理,研究重金属胁迫对宽叶泽苔草生长、重金属及养分吸收的影响.结果表明:宽叶泽苔草对重金属毒害具有很强的抗性,各种重金属胁迫下植株地上部并未表现出失绿或坏死等中毒症状;重金属Cd、Cr、Pb和Cu处理,分别显著提高根和地上部茎叶中Cd2+、Cr6+、Pb2+和Cu2+质量分数;Cu处理显著增加植株Mn2+质量分数,减少地上部Fe3+质量分数;Pb处理显著增加根系Mn2+质量分数;但对Zn2+质量浓度无显著影响.相关分析表明,植株地上部中Fe3+和Mn2+呈显著负相关,而Mn2+和Cu2+呈显著正相关;地下部中Pb2+与Mn2+呈显著正相关,Cr6+与Zn2+呈显著负相关.  相似文献   

2.
采用“前驱体-煅烧”策略制备了一种新型富硫石墨烯碳负载层状双金属氧化物(G/S-LDO),应用于Cd2+和Cr3+吸附。借助不同影响因素(pH、不同浓度、不同反应时间)实验,结合X射线衍射(XRD)、傅里叶变换红外光谱仪(FT-IR)和扫描电子显微镜(SEM),探究G/S-LDO对Cd2+和Cr3+去除能力及去除机制。结果表明:在pH=3~6范围内,G/S-LDO对Cd2+和Cr3+几乎不受pH影响。G/S-LDO对Cd2+和Cr3+吸附过程均符合Langmuir模型和准二级动力学模型,最大吸附量分别为473.00和99.76 mg·g-1。XRD、FT-IR和SEM分析表明G/S-LDO对Cd2+去除主要依靠与S掺杂石墨烯类碳作用形成亚硫化物,而和Cr3+的去除主要与LDO水化释放的OH-作用生成CrO(OH)沉淀。  相似文献   

3.
选择Mg2+为掺杂离子,通过固相反应法制备镁-铝酸三钙(Mg-C3A)用于泛浓度氨氮和磷酸根的同步捕获。静态去除实验结果表明,Mg-C3A对氨氮去除能力随着初始氨氮浓度的增加而增加,磷酸根去除几乎不受影响(20.2 mg·g-1)。动力学结果揭示Mg-C3A对氨氮和磷酸根去除分别在8和2 h达到平衡,且去除过程符合准二级动力学模型(R2>0.99)。X射线衍射(XRD)和光电子能谱(XPS)对固体产物表征结果说明Mg-C3A水化释放Mg2+,Ca2+,Al3+和OH-对氨氮和磷酸根去除起重要作用。低氨氮浓度(200 mg·L-1)下,氨氮去除主要通过与Mg-C3A释放OH-结合生成NH3;磷酸根则与Mg2+,Al3+  相似文献   

4.
建立了一种离子色谱-抑制电导同时测定植物生长调节剂中主要活性成分氯化胆碱、甲哌鎓以及杂质N-甲基哌啶的快速检测方法。 样品经稀释过膜后直接进样分析, 采用阳离子交换色谱柱thermo scientific ionpac CG17 (50 mm×4 mm) + CS17 (250 mm×4 mm),以10 mmol·L-1甲烷磺酸溶液等度淋洗,可在10 min内完成以上目标分析物的检测,且常规阳离子(Li+、 Na+、 NH4+、 K+、 Mg2+和Ca2+)不会干扰对3种化合物的测定。 在优化后的最佳色谱条件下,氯化胆碱的线性范围为0.1~500 mg·L-1,甲哌鎓的线性范围为0.5~500 mg·L-1,N-甲基哌啶的线性范围为0.4~200 mg·L-1,3种化合物线性相关系数(r)均大于0.999 4,线性关系良好。 3种目标分析物的检出限(信噪比S/N = 3)为28.0~112.5 μg·L-1,定量限(信噪比S/N = 10)为93.5~375.0 μg·L-1,峰面积的相对标准偏差(RSD, n = 6)均小于0.47%,表明方法具有较好的重现性。 该检测方法简单方便,已成功应用于商品化植物生长调节剂中3种成分质量浓度的测定,实际样品加标回收率为96.0%~103.6%。 可应用于相关植物生长调节剂原料及成品的质量控制。  相似文献   

5.
建立了一种离子色谱-抑制电导同时测定植物生长调节剂中主要活性成分氯化胆碱、甲哌鎓以及杂质N-甲基哌啶的快速检测方法。 样品经稀释过膜后直接进样分析, 采用阳离子交换色谱柱thermo scientific ionpac CG17 (50 mm×4 mm) + CS17 (250 mm×4 mm),以10 mmol·L-1甲烷磺酸溶液等度淋洗,可在10 min内完成以上目标分析物的检测,且常规阳离子(Li+、 Na+、 NH4+、 K+、 Mg2+和Ca2+)不会干扰对3种化合物的测定。 在优化后的最佳色谱条件下,氯化胆碱的线性范围为0.1~500 mg·L-1,甲哌鎓的线性范围为0.5~500 mg·L-1,N-甲基哌啶的线性范围为0.4~200 mg·L-1,3种化合物线性相关系数(r)均大于0.999 4,线性关系良好。 3种目标分析物的检出限(信噪比S/N = 3)为28.0~112.5 μg·L-1,定量限(信噪比S/N = 10)为93.5~375.0 μg·L-1,峰面积的相对标准偏差(RSD, n = 6)均小于0.47%,表明方法具有较好的重现性。 该检测方法简单方便,已成功应用于商品化植物生长调节剂中3种成分质量浓度的测定,实际样品加标回收率为96.0%~103.6%。 可应用于相关植物生长调节剂原料及成品的质量控制。  相似文献   

6.
反渗透淡化水因矿物质含量低、稳定性差,需进行调质以改善水质。通过研究调质后水体碳酸钙沉淀势CCPP、Ryznar稳定指数R.S.I.、拉森指数LR、氧化还原电位ORP等指标与调质剂(NaHCO3、CaCl2)投加量间的关系,为反渗透淡化水调质剂投加剂量提供依据。研究表明:NaHCO3为50 ~90 mg·L-1时,随着投加量的增加,R.S.I.降低(趋近于6.0~7.0),水质稳定性改善,NaHCO3为90~110 mg·L-1时,随着投加量的增加,R.S.I.升高(偏离了6.0~7.0),水质稳定性变差;随着NaHCO3投加量的增加,CCPP降低,水质由沉淀倾向变为腐蚀倾向,当NaHCO3投加量达到70 mg·L-1时,CCPP趋于稳定,水质稳定;随着NaHCO3投加量的继续增加,LR降低,水质稳定性改善,而ORP降低,当NaHCO3投加量达到90 mg·L-1时,ORP趋于平缓。建议NaHCO3投加量为90 mg·L-1。随着Ca2+投加量的增加,R.S.I.、CCPP降低,水体稳定性变差;CaCl2投加量增加,LR增加,水质稳定性变差,ORP增大,水质健康性变差。建议CaCl2投加量为20 mg·L-1。  相似文献   

7.
利用氧化石墨烯(GO)、两种荧光染料标记的单链DNA及核酸染料SYBR GreenⅠ(SG-Ⅰ),构建了能特异性识别Hg2+的三色荧光探针,建立了一种快速、高效、高灵敏定量检测水体中汞离子(Hg2+)的新方法。在这种探针中,两种染料Tetramethyl-6-carboxyrhodamine (TAMRA)和Cyanine-5 (Cy-5)分别标记在两条单链DNA的5’端,这两条单链DNA中有一部分碱基互补配对,未互补的碱基均为胸腺嘧啶(T碱基)。在没有Hg2+存在时,两种荧光染料标记的单链DNA被吸附在GO的表面,TAMRA和Cy-5与GO靠近,荧光被GO猝灭,它们的荧光信号都很弱;此时,SG-Ⅰ被吸附在GO的表面或游离在溶液中,荧光信号也很弱。在有Hg2+存在时,两种荧光染料标记的单链DNA通过T-Hg2+-T结构特异性结合形成双链DNA,从而脱离GO的表面,TAMRA和Cy-5远离GO,荧光信号恢复;与此同时,SG-Ⅰ与双链DNA结合,荧光强度显著增强。根据TAMRA、C...  相似文献   

8.
针对印染废水中难以去除的低浓度锑,采用FeSO4强化活性污泥法,并结合高通量测序、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)探究其除锑机理。结果表明:(1) FeSO4强化活性污泥法具有较强的除锑性能,当锑初始浓度为250μg·L-1,pH为8,Fe2+投加量为90 mg·L-1时,Sb(Ⅴ)去除率稳定在60%以上;共存离子对Sb(Ⅴ)去除率有促进或抑制作用。(2)在投加FeSO4的驯化过程中,活性污泥微生物丰度和多样性降低,颗粒更松散、比表面积增大、粒径减小,与锑的接触面积增大,从而提高了除锑效率;Fe2+在生化过程中被原位氧化为α-Fe O(OH),与活性污泥表面的大量羧基或氨基团结合,附着在活性污泥表面,实现对锑的吸附。  相似文献   

9.
以天目铁木嫩茎尖为外植体,应用均匀设计法筛选其基部愈伤组织诱导和愈伤组织再分化芽苗的最适合培养基.结果表明,最适合的嫩茎尖基部愈伤组织诱导培养基为1/2DR+TDZ 2.30 mg·L-1+2,4-D 0.55 mg·L-1,诱导率为93.5%;愈伤组织芽苗再分化培养基为1/2DR+TDZ 3.30 mg·L-1+KT 0.70 mg·L-1,分化率达99.8%以上. 成功建立了天目铁木嫩茎尖离体诱导愈伤组织和芽苗再分化体系,且再生芽苗与野生植株染色体数目相同.  相似文献   

10.
甲氧基多溴联苯醚(methoxypolybrominated diphenyl ethers, MeO-PBDEs)广泛存在于生物体和海洋环境。以象山海域的生物体和沉积物为样本,采用固相萃取净化-气相色谱-负化学源质谱法,检测了6种MeO-PBDEs,结果显示,当目标分析物浓度为0.1~20.0 μg?L-1时,线性关系良好(R2>0.999),检出限为0.13~0.22 μg?kg-1,定量限为0.42~0.72 μg?kg-1,实际样品的平均回收率为71.2%~116.2%。MeO-PBDEs的分布状况调查结果显示,藻类样品中仅检出6-MeO-BDE-47,且浓度较低,其他生物体中检出3种MeO-PBDEs,检出率为31.3%,浓度为0.21~2.72 μg?kg-1。沉积物中无MeO-PBDEs被检出。  相似文献   

11.
以反渗透作为主体工艺进行突发自然灾害应急水处理工艺研究,在试验浓度范围内,反渗透工艺对浊度、CODMn、氨氮和盐类物质的平均去除率分别达99%,90%,87%和96%.对镉、铅、镍、铜4种常见重金属离子的去除效果显著,平均去除率分别达96%,97%,96.5%,96%.对乙苯、二甲苯、氯苯、1,2-二氯苯、1,4-二氯苯、2,4,6-三氯酚、三氯乙酸、三氯乙醛以及乐果、灭草松、草甘膦、敌敌畏、百菌清、毒死蜱6种典型农药的去除效果较好,平均去除率分别达98.51%,98.46%,97.84%,99.03%,99.11%,99.56%,99.24%,99.29%,99.16%,99.98%,99.95%,99.76%,99.61%,99.67%;对三氯甲烷、三溴甲烷、苯酚、苯乙烯的去除效果一般,平均去除率分别为73.43%,86.03%,72.64%,63.31%;对苯、二氯甲烷、甲醛的去除效果较差,平均去除率分别为44.36%,17.57%,8.37%.在试验研究的基础上,提出应急水源地水质建议性标准,为突发性水污染反渗透处理工艺的实际应用提供了参考依据.  相似文献   

12.
制备了一系列Cu掺杂量不同的Fe/β(40)催化剂,并采用ICP-AES、XRD、H2-TPR、UV-vis和XPS等表征技术分析了催化剂的物化性质.结果表明,适量的铜掺杂能大大提高Fe/β(40)催化剂的低温活性,拓宽其活性温度窗口,但过量的Cu掺杂会降低催化剂的N2选择性.Cu掺杂质量比为1.27%Cu-2%Fe/β(40)的催化剂具有最佳的SCR性能,这与催化剂中存在较多离子交换位的Fe~(3+)和Cu~(2+)物种有关,而存在较多的CuO物种会促进氨高温氧化,使催化剂的N2选择性降低且高温窗口变窄.高温水热条件下Cu的存在可能使Cu、Fe物种更容易发生迁移和团聚,导致Cu-Fe/β(40)催化剂的水热稳定性明显变差.  相似文献   

13.
利用在线监测仪测量了杭州市一次重灰霾过程(2017年12月29日至2018年1月3日)中PM2.5主要水溶性离子(Cl-、SO42-、NO3-、NH4+、Na+、Ga2+、Mg2+)及主要气态污染物(SO2、NO2、O3、NO、CO、HCl、NH3、HNO2、HNO3)的小时浓度。结合混合受体模型和国控监测分析,研究了2017年12月30-31日重灰霾事件的污染特征、来源和成因。研究结果表明:PM2.5浓度高达318 μg·m-3; NO3-/SO42-最大值为2.68,说明移动源污染是杭州市PM2.5形成的重要来源; PM2.5/CO最高达到0.19,说明二次细颗粒物对PM2.5贡献很大;NO3-、SO42-、NH4+的浓度总和占PM2.5平均浓度的64.3%,说明二次无机细颗粒物是杭州重灰霾形成的重要原因,且NO3-的贡献最大,占33.5%。混合受体模型分析显示,杭州市重灰霾污染的潜在源区主要位于安徽、江苏、河南、山东四省交界处,以及安徽省中东部、蚌埠、芜湖等工业污染较为严重的城市。夹杂着大量污染物的北方干冷空气远距离传输叠加部分局地源是杭州此次重雾霾形成的根本原因。因此,为了改善杭州市空气质量,不仅需控制当地的污染物排放,而且还需对整个长三角地区甚至跨区域采取大气联防联控策略。  相似文献   

14.
基于热力学分析方法,借助Medusa分析软件,分析了废铅膏主要含铅组分在枸橼酸钠-柠檬酸绿色回收浸出体系中的浸出行为,并与实际制备所得产物的物相表征结果进行了对比分析.结果表明: pH值为2.3~4.5,电位为0~1.2 V时,浸出的稳定物相为Pb(Hcit);pH值为4.5~7.5,电位为0~1.2 V时,浸出体系的稳定物相为Pb2(Cit)22-,其与游离的Pb2+可进一步络合.产物的物相表征结果与热力学结果基本吻合,表明以Medusa为媒介的热力学分析方法可用于废铅膏主要含铅组分的浸出过程和转化规律研究.  相似文献   

15.
利用在线监测仪测量了杭州市一次重灰霾过程(2017年12月29日至2018年1月3日)中PM2.5主要水溶性离子(Cl-、SO42-、NO3-、NH4+、Na+、Ga2+、Mg2+)及主要气态污染物(SO2、NO2、O3、NO、CO、HCl、NH3、HNO2、HNO3)的小时浓度。结合混合受体模型和国控监测分析,研究了2017年12月30-31日重灰霾事件的污染特征、来源和成因。研究结果表明:PM2.5浓度高达318 μg·m-3; NO3-/SO42-最大值为2.68,说明移动源污染是杭州市PM2.5形成的重要来源; PM2.5/CO最高达到0.19,说明二次细颗粒物对PM2.5贡献很大;NO3-、SO42-、NH4+的浓度总和占PM2.5平均浓度的64.3%,说明二次无机细颗粒物是杭州重灰霾形成的重要原因,且NO3-的贡献最大,占33.5%。混合受体模型分析显示,杭州市重灰霾污染的潜在源区主要位于安徽、江苏、河南、山东四省交界处,以及安徽省中东部、蚌埠、芜湖等工业污染较为严重的城市。夹杂着大量污染物的北方干冷空气远距离传输叠加部分局地源是杭州此次重雾霾形成的根本原因。因此,为了改善杭州市空气质量,不仅需控制当地的污染物排放,而且还需对整个长三角地区甚至跨区域采取大气联防联控策略。  相似文献   

16.
温州市PM_(2.5)中水溶性离子污染特征及来源分析   总被引:3,自引:0,他引:3       下载免费PDF全文
2015年1~12月在温州市区采集448个PM_(2.5)样品,采用离子色谱法分析PM_(2.5)中9种水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、Cl~-、Na~+、K~+、Ca~(2+)、Mg~(2+)和F~-)的浓度,研究其污染特征、化学组分和来源.采样期间9种水溶性离子总浓度为39.97μg·m~(-3),SO_4~(2-)、NO_3~-和NH_4~+占所测水溶性离子总量的(40.19±10.04)%.离子总浓度的季节变化特征为冬季春季秋季夏季,从空间分布上看,多数季节市站采样点PM_(2.5)中离子总浓度低于南浦、龙湾和瓯海采样点.相关性分析结果显示,PM_(2.5)值与NH_4~+、Ca~(2+)、Na~+、K~+、Cl~-、NO_3~-、SO_4~(2-)浓度显著相关,PM_(2.5)中SO_4~(2-)和NH_4~+的主要结合方式为(NH_4)_2SO_4.硫氧化速率(SOR)和氮氧化速率(NOR)的年均值分别为0.44±0.09和0.13±0.04,表明温州市PM_(2.5)中SO_4~(2-)和NO_3~-主要由二次转化形成.主成分分析结果表明,温州市PM_(2.5)中水溶性离子主要来源于燃煤(火力发电和工业燃煤)、生物质燃烧、机动车尾气以及道路和建筑扬尘.  相似文献   

17.
为得到新型高效多相催化剂,有效去除废水中的染料,以Cu(Ac)_2与CuFe_2O_4@PDA为原料制备了催化剂CuFe_2O_4@PDA-Cu.通过IR、XRD、XPS、UV-Vis、DRS技术对催化剂的性能进行了表征,考察了温度、H_2O_2用量、催化剂用量、pH值、盐等对催化活性的影响.利用HPLC测定降解产物,采用自由基捕获和抑制实验进行机理验证,发现催化剂是核壳结构.温度升高、pH值升高、H_2O_2和催化剂用量的增加均有利于提高催化活性;氯化物、硫酸盐、硝酸盐和磷酸盐不影响催化效果,溴化物和亚硝酸盐降低了催化效果.得到的最优降解条件为:T=30℃,催化剂用量10mg·L~(-1),pH=9,过氧化氢用量10mmol·L~(-1),染料浓度30mg·L~(-1).最优条件下催化剂可循环使用4次以上;甲基橙、茜素红和罗丹明B的去除率为100%;染料R0213、O0118和B0115的去除率大于60%.降解产物有草酸、马来酸和CO_2.甲基橙、茜素红和罗丹明B降解后COD_(Mn)=2~4mg·L~(-1).水杨酸捕获·OH生成2.5-二羟基苯甲酸,叔丁醇抑制染料降解.结果表明,催化剂可活化H_2O_2产生·OH,·OH攻击染料分子开环降解直至矿化.该研究为开发高效多相催化剂,有效去除废水中的染料提供了科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号