首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Ca3Sc2Si3O12:Ce3+ (CSS:Ce) green phosphors used for white light‐emitting diodes (LEDs) are synthesized and codoped with Al3+ via a solid‐state reaction method. The crystal structure and vibrational modes are analyzed by X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman scattering spectroscopy. The energy transfer behavior and optical performance are characterized by photoluminescence and excitation spectra, quantum efficiency, and time‐resolved photoluminescence. The incorporation of Al3+ into CSS:Ce can inhibit the formation of the impurity phases Sc2O3 and CeO2, improve crystallinity, and enhance the photoluminescence intensity as well as quantum efficiency. The substitution of Sc3+ with Al3+ increased the crystal field splitting of Ce3+ and resulted in the red shift of photoluminescence. The results show that Ca3Sc2?xAlxSi3O12:Ce3+ has high quantum efficiency, making it a promising green phosphor that can be collocated with a commercial 450 nm blue LED and a red phosphor for solid‐state lighting applications.  相似文献   

2.
Eu3+‐activated borogermanate scintillating glasses with compositions of 25B2O3–40GeO2–25Gd2O3–(10?x)La2O3xEu2O3 were prepared by melt‐quenching method. Their optical properties were studied by transmittance, photoluminescence, Fourier transform infrared (FTIR), Raman and X‐ray excited luminescence (XEL) spectra in detail. The results suggest that the role of Gd2O3 is of significance for designing dense glass. Furthermore, energy‐transfer efficiency from Gd3+ to Eu3+ ions can be near 100% when the content of Eu2O3 exceeds = 4, the corresponding critical distance for Gd3+–Eu3+ ion pairs is estimated to be 4.57 Å. The strongest emission intensities of Eu3+ ions under both 276 and 394 nm excitation are simultaneously at the content of 8 mol% Eu2O3. The degree of Eu–O covalency and the local environment of Eu3+ ions are evaluated by the value of Ωt parameters from Judd–Ofelt analysis. The calculated results imply that the covalency of Eu–O bond increases with the increasing concentration of Eu3+ ions in the investigated borogermanate glass. As a potential scintillating application, the strongest XEL intensity under X‐ray excitation is found to be in the case of 6 mol% Eu2O3, which is slightly different from the photoluminescence results. The possible reason may be attributed to the discrepancy of the excitation mechanism between the ultraviolet and X‐ray energy.  相似文献   

3.
A series of Ce3+/Dy3+‐doped oxyfluoride borosilicate glasses prepared by melt‐quenching method are investigated for light‐emitting diodes applications. These glasses are studied via X‐ray diffraction (XRD), optical absorption, photoluminescence (PL), color coordinate, and Fourier transform infrared (FT‐IR) spectra. We find that the absorption and emission bands of Ce3+ ions move to the longer wavelengths with increasing Ce3+ concentrations and decreasing B2O3 and Al2O3 contents in the glass compositions. We also discover the emission behavior of Ce3+ ions is dependent on the excitation wavelengths. The glass structure variations with changing glass compositions are examined using the FT‐IR spectra. The influence of glass network structure on the luminescence of Ce3+/Dy3+ codoped glasses is studied. Furthermore, the near‐ideal white light emission (color coordinate x = 0.32, y = 0.32) from the Ce3+/Dy3+ codoped glasses excited at 350 nm UV light is realized.  相似文献   

4.
A novel Y3?xSi6N11: xCe3+ yellow phosphor was synthesized using the carbothermal reduction and nitridition method at 1550°C for 16 h in this letter. Photoluminescence spectra indicated that the phosphor showed broad excitation spectrum and had strong absorption in range of 350–450 nm. It also gave a broad emission band (Full width at half maximum = 153 nm) centered at 575 nm under 425‐nm excitation. With increasing Ce3+ concentration, the strongest emission intensity was obtained at 5 mol% Ce3+ doping amount and a systematic redshift was observed as the Ce3+ concentration increased. The results indicate that this novel yellow phosphor is a promising candidate for using in blue‐chip‐excited white light–emitting diodes (LEDs).  相似文献   

5.
Fast Ce3+‐activated borogermanate scintillating glasses with the density of 5.58–5.67 g/cm3 were synthesized by melt quenching method in air atmosphere for the first time. The optical transmittance and X‐ray absorption near edge spectroscopy results confirm that Ce4+ ions can be effectively reduced to Ce3+ ions by adding 0.31 mol% Si3N4 as a strong reducing agent during glass synthesis. The luminescence behavior under both ultraviolet and X‐ray excitations indicate that the proposed Ce3+‐activated borogermanate scintillating glasses have a broad emission band centered at 430 nm and a decay time of less than 25 ns. This will be of great interest in high‐energy physics and nuclear physics engineering.  相似文献   

6.
The design and optimization of nanostructures with unique morphologies and properties are at the forefront of biomedical nanotechnology. Cerium oxides are widely used to investigate the effect of morphology on performance. However, elucidating the morphology–activity relationship of cerium oxide nanocrystals in biomedical applications remains challenging. Herein, the therapeutic effects of cerium oxide nanoparticles with different morphologies: cerium oxide nanorods with two different aspect ratios (CeOx NRs_A and CeOx NRs_B), cerium oxide nanopolyhedra (CeOx NPs), and cerium oxide nanocubes (CeOx NCs) are investigated in in vivo and in vitro mild traumatic brain injury (TBI) models. Cerium oxide nanoparticles inhibit oxidative stress and inflammation after mild TBI, alleviating cognitive impairment; furthermore, the therapeutic effect is significantly affected by their morphology. Owing to the higher Ce3+/Ce4+ ratio, exposure of more active crystal surfaces, and greater number of exposed oxygen vacancies, CeOx NRs show better activity than CeOx NPs and CeOx NCs for mild TBI. Among the two investigated types of cerium oxide nanorods, CeOx NRs_A, with a higher Ce3+/Ce4+ ratio on the surface, appear to spread better than CeOx NRs_B in the injured lesions. The factors causing morphology-controlled biomedical performance, such as Ce3+/Ce4+ molar ratio, surface area, and aspect ratio, are discussed.  相似文献   

7.
A series of phosphors Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ have been prepared by a hightemperature solid‐state reaction using boric acid as flux. These oxyfluorides crystallize in cubic structure, space group. Under the near ultraviolet excitation within wavelength range 310–390 nm, Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors exhibit an intense emission covering a broad band of 370–500 nm derived from the 5d→4f transitions of Ce3+ and a characteristic emission at 544 nm of Tb3+. The emission can be tuned from blue to green by altering the relative ratio of Ce3+ to Tb3+ in the composition. The energy‐transfer mechanism from Ce3+ to Tb3+ is investigated based on the site occupancy of the luminescence center in the crystal structure of the Ca12Al14O32F2 host. More importantly, when a certain amount of boric acid is added as flux in the synthesis, the fluorescence intensity of the phosphors increases about 65%. Because of its broad excitation and efficiently tunable blue to green luminescence, the Ca12(0.97?x)Al14O32F2: 0.03Ce3+, xTb3+ phosphors may find promising application as a near UV‐convertible phosphor for white‐light‐emitting diodes.  相似文献   

8.
A series of Ca4–yY6–xO(SiO4)6: xCe3+, yEu2+ samples are synthesized by a high‐temperature solid‐state method. Under 356 nm excitation, Ca4Y6O(SiO4)6:Ce3+ presents a strong blue emission band at 426 nm which are assigned to 4f05d1→4f1 transition of Ce3+ ion. Ca4Y6O(SiO4)6:Eu2+ shows green emission under 380 nm radiation excitation, and the peak locates at 527 nm which is mainly due to transitions of Eu2+ from 4f7 ground state to 4f65d1 excited state. Under 356 nm excitation, a remarkable energy transfer from Ce3+ to Eu2+ exists in Ca4Y6O(SiO4)6, and the result reveals that the mechanism of energy transfer is a resonant type via a nonradiative dipole–dipole interaction. The hues of Ca4Y6O(SiO4)6:Ce3+, Eu2+ can be adjusted by the energy transfer from Ce3+ to Eu2+ ions, and a white emission can be achieved by tuning the ratio of Ce3+ to Eu2+. The results mean that Ce3+ may be the effective sensitizer for Eu2+‐doped Ca4Y6O(SiO4)6.  相似文献   

9.
A colorless Ce3+‐activated borosilicate scintillating glass enriched with Gd2O3 is successfully synthesized in air atmosphere for the first time. The full replacement of 10 mol% BaO by Al2O3, and the partial substitution of 3 mol% SiO2 by Si3N4 in the designed glass composition are crucial for this success. The role of Al3+ on tuning the optical properties of Ce3+‐activated borosilicate scintillating glass synthesized in air are analyzed by optical transmittance, X‐ray absorption near edge spectroscopy (XANES) spectra, photoluminescence (PL) and radioluminescence (RL) spectra. The results suggest that the stable Ce4+ ions can be effectively reduced to stable Ce3+ ions by the full replacement of BaO by Al2O3, and both the PL andRL intensity of the designed borosilicate scintillating glass are enhanced by a factor of 6.7 and 5.2, respectively. The integral RL intensity of the synthesized Ce3+‐activated borosilicate scintillating glass is ~17.2%BGO, with a light output of about 1180 ph/MeV. The strategy of substituting BaO by Al2O3 will trigger more scientific and technological considerations in designing novel fast scintillating glasses.  相似文献   

10.
Ce3+/Pr3+ codoped Li2SrSiO4 (LSS) phosphors with blue, red, and near‐infrared (NIR) tri‐emission have been prepared via a high‐temperature solid‐state reaction method. Under the excitation of 200 to 400 nm near‐ultraviolet (n‐UV), the photoluminescence (PL) spectra of phosphors are composed of visible and NIR two parts. The former exhibits blue and red emission bands centered at around 428 nm from 5d–4f transition of Ce3+ and 611 nm from 1D23H4 transition of Pr3+, those overlap with photosynthesis action spectra of plants and absorption spectra of chlorophylls and carotenoids. While the later presents a broad NIR emission band peaking near 1039 nm caused by the 1G43H4 of Pr3+, matching with the absorption of bacteriochlorophyll. Their emission intensity ratios (B: R: NIR) could be tuned by altering the relative ratios of Ce3+ and Pr3+ concentration in the phosphors to meet the requirements of multifarious plants and bacteria. The efficient energy transfer from Ce3+ to Pr3+ takes place in the LSS host, which ascribed to an exchange interaction according to PL spectra and decay curves of phosphors. Results suggest that the present LSS: Ce3+, Pr3+ phosphors have great potential applications in plant growth n‐UV LED.  相似文献   

11.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

12.
《Ceramics International》2015,41(4):5554-5560
A series of color-tunable NaCaBO3: Ce3+, Tb3+ phosphors have been synthesized on the basis of efficient Ce3+→Tb3+ energy transfer. The photoluminescence emission and excitation spectra, the lifetime, and the effect of Tb3+ concentration are investigated in detail. The enhanced photoluminescence of Tb3+ with sharp emission lines could be obtained by the broad excitation band from the allowed 4f–5d absorption of Ce3+ ions. The intensity ratio of blue emission from Ce3+ and green emission from Tb3+ can be tuned by adjusting their concentrations. The energy transfer from Ce3+ to Tb3+ in NaCaBO3 was found to be an electric dipole–quadrupole interaction.  相似文献   

13.
Ce3+-doped 20Gd2O3–20Al2O3–60SiO2 (GAS:xCe3+) glasses (x = 0.3, 0.7, 1.1, 1.5, 1.9 mol%) with Si3N4 as a reducing agent were prepared. The density of the glasses is around 4.2 g/cm3. With the increase in the Ce3+ concentration, both the photoluminescence (PL) and PL excitation peaks of GAS:xCe3+ glasses show a redshift because the 4f–5d energy levels of Ce3+ ions are narrowed. PL quantum yield and PL decay time of GAS:xCe3+ glasses are 28.32–50.59% and 43–64 ns, respectively. In addition, they both first increases and then decreases with the Ce3+ concentration increasing, reached the maximum when x = 1.1 mol%. The integrated X-ray excited luminescence (XEL) intensity of the GAS:1.1Ce3+ glass is 23.86% of that of Bi4Ge3O12 (BGO) crystal, and the light yield reaches 1200 ph/MeV with an energy resolution of 22.98% at 662 keV when exposed to γ-rays. The PL and XEL thermal activation energies of GAS:xCe3+ glasses are independent of Ce3+ ions concentration. Scintillating decay time of the glasses exhibits two components consisting of nanosecond and microsecond levels, and the scintillating decay time gradually decreases with the Ce3+ concentration increasing. The difference between PL and scintillating decay time is discussed regarding the different luminescent mechanisms.  相似文献   

14.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

15.
Germanate glasses have potential applications as optical fibers. Materials doped with rare earth ions are good candidates for optical, lasing, and magnetic applications. Based on the ternary system, CeO2–Na2O–GeO2 a series of six glasses were fabricated using powder fusion, and varying the Na2O content from 0 to 45 mol%, and a CeO2 content constant at 3 mol%. The glasses were analyzed by FT‐IR, Raman and X‐ray photoelectron (XPS) spectroscopies to obtain information about the glass structure, cerium oxidation's state and how it is introduced in the glass network. FT‐IR and Raman spectra revealed the presence of GeO6 and GeO4 groups as well as Q2 and Q3 units in the glasses with alkali low content. XPS spectra analysis revealed that the cerium ions were reduced from Ce4+ to Ce3+. The nonbonding to total oxygen ratio was estimated from the curve fitting of the O 1s core level spectra. Density and elastic parameters showed a nonlineal tendency in the change of the physical properties as a function of Na2O content. Finally, photoluminescence spectroscopy confirmed the presence of Ce3+ ions. The characteristic 4f → 5d electronic transitions at 360 nm were detected, when a 280 nm excitation line of pulsed laser was used as excitation source.  相似文献   

16.
Sr2‐xBaxSi(O,N)4:Eu2+ (SBxSON:Eu2+) oxynitridosilicate phosphors were prepared via incorporation of N3?, Eu2+, and Ba2+ ions into Sr2SiO4 (SSO) lattices. X‐ray diffraction patterns of the prepared powders revealed that SBxSON:Eu2+ was a solid‐solution form of SSO. An increase in x values caused a phase transition and an expansion of the unit cell. The photoluminescence excitation (PLE) spectra of SBxSON:Eu2+ were broad, covering the ultraviolet range to the visible range. Corresponding PL emission spectra strongly depended on the excitation wavelengths and consisted of two emission bands, one in the green‐blue region (A‐band) and the other in the red region (B‐band), which were assigned to Eu(I) and Eu(II), respectively. The B‐band resulted from a dramatic red‐shift of the green emission band assigned to Eu(II) of SSO:Eu2+, revealing that the nitridation process preferentially affected the Eu(II) sites. This behavior was explained by crystal field splitting, the fluorescence decay time, and thermal quenching. The Ba2+ substitution caused evolution of the PL spectra, and its effects on the spectra were discussed under consideration of ionic size and covalence.  相似文献   

17.
Blue‐emitting phosphor of Ce3+‐activated fluorosilicate apatite Ba2Y3[SiO4]3F was prepared via conventional solid‐state reaction method. The X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) excitation and emission spectra, and the decay curves (lifetimes) were applied to characterize the phosphors. The effects of Ce3+ activator concentration on the luminescence properties were investigated. Ba2Y2.85Ce0.15[SiO4]3F exhibits the brightest blue emission with CIE coordinates of (= 0.231, = 0.301). The crystallographic site of Ce3+ ions in Ba2Y3[SiO4]3F lattices was identified. Two kinds of crystallographic Ce3+ occupying MI and MII sites in Ba2Y3[SiO4]3F lattices result in two distinct emission centers. The internal PL quantum efficiency, the temperature‐dependent luminescence, and the activation energy of thermal quenching were investigated to evaluate the potential application. This is a new kind of blue‐emitting phosphor based on apatite structure.  相似文献   

18.
A series of Ce3+‐ and Mn2+‐(co‐)activated SrAl2Si2O8 phosphors have been prepared at 1350°C under a reducing atmosphere and their photoluminescence properties have been studied as a function of the (co‐)dopant ions concentrations. We have discovered that energy transfer (ET) not only from Ce3+ to Mn2+ but also from “defects” to Mn2+ by the facts that there is existing significant overlap between the emission spectrum of Ce3+ (“defects”) and the excitation spectrum of Mn2+. The source of the “defects” in the host lattice is originated from the different charge substitution between Ce3+ and Sr2+. By adopting the principle of ET, the material SrAl2Si2O8: Ce, Mn can act as a phosphor for white‐light ultraviolet light‐emitting diodes (UV‐LEDs) by tuning of the dopants contents.  相似文献   

19.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

20.
This article reports a low‐cost yellow‐emitting Y3Al5‐xBxO12‐xNx:Ce3+ phosphor with an enhanced luminescent intensity and excellent thermal stability for white light‐emitting diodes (LEDs). It was synthesized by a simple gas‐pressure sintering (GPS) process. The effect of B3+–N3? incorporation on the optical properties of Y3Al5O12:Ce3+ phosphor was investigated. The addition of appropriate amounts of boron nitride (BN) leads to a marked increase in photoluminescent intensity and a slight shift of its emission spectra toward the blue region, which is assigned to the improved crystallinity and increased particle size. Especially, the prepared oxynitride phosphor does not exhibit any thermal quenching under high temperature, and the emission intensity at 250°C even increases up to 175% of that measured at 20°C. Finally, the white LED flat lamp with luminous efficiency as high as 101 lm/W, color rendering index of 72, and correlated color temperature of about 6600 K is successfully realized by using YAG:Ce3+ phosphor doped with 0.5 molar ratio BN, which is acceptable and promising for general indoor illuminations to replace fluorescent or incandescent lamps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号