首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
史琰  刘增基  邱智亮  刘亚社 《电子学报》2005,33(7):1158-1162
随着越来越多的实时业务接入因特网,如何在满足业务端到端QoS要求的前提下,使网络接纳更多用户成为一个严峻的挑战.本文首先对路径级的网络资源最优分配问题建立数学模型.理论推导证明:该问题可以通过一个简单的最优规划问题求解.随后,根据求得的最优解的特点,本文提出了一种结合网络资源状态和用户业务QoS要求的资源分配算法—ERA算法.ERA算法不仅运算简单,而且仿真结果也表明,在相同网络资源总量的前提下,其接纳的用户数目可以达到理论的上界.  相似文献   

2.
Resource reservation or the other prioritization strategies adopted by Call Admission Control (CAC) schemes in wireless networks lead to unfair resource allocation to users belonging to different service classes (SCs) due to high divergence among the respective call blocking probabilities (CBPs). In this paper, we propose dynamic optimization of probabilistic CAC (P‐CAC) schemes to assure CAC fairness among users of different SCs in wireless networks. The approach is based on users utility combined with fairness optimization, aiming at dynamically determining the probability value in the P‐CAC scheme. This optimal probability is adjusted to network ongoing traffic, CBPs of each SC, prioritization levels characterizing the SCs supported, and the users risk aversion, which reflects their behavior toward the perceived QoS. The existence and uniqueness of the optimal probability that leads to absolute fairness among the users of a wireless network are proven. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
陈赓  夏玮玮  沈连丰 《通信学报》2014,35(12):78-88
针对异构无线网络融合环境提出了一种基于多门限预留机制的自适应带宽分配算法,从而为多业务提供QoS保证。该算法采用多宿主传输机制,通过预设各个网络中不同业务的带宽分配门限,并基于各个网络中不同业务和用户的带宽分配矩阵,根据业务k支持的传输速率等级需求和网络状态的变化,将自适应带宽分配问题转化为一个动态优化问题并采用迭代方法来求解,在得到各个网络中不同业务和用户优化的带宽分配矩阵的同时,在带宽预留门限和网络容量的约束条件下实现网络实时吞吐量的最大化,以提高整个异构网络带宽的利用效率。数值仿真结果显示,所提算法能够支持满足QoS需求的传输速率等级,减小了新用户接入异构网络的阻塞概率,提高了平均用户接入率并将网络吞吐量最大提高40%。  相似文献   

4.
无线多媒体网络中的业务包括话音、流媒体、交互类和背景类业务4种,除话音业务外其余3种业务都是可变比特速率业务。对该网络用户资源分配(主要是带宽的分配)若采用传统的固定分配方法,必定陷入资源利用率低下和用户QoS得不到保障的两难境地。该文提出了一种基于无线多媒体业务的动态带宽分配与优化策略,在保证用户QoS的前提下,尽可能提高资源利用率。该文分别从网络和用户两个角度考虑,通过系统容量、业务阻塞率、数据延迟、流媒体的实际传输比和VBR业务综合服务等级等参数,对可升降级QoS无线多媒体网络进行了仿真分析,结果表明,对比传统的网络资源管理策略,该策略大大改善了系统的性能,提高了系统资源利用率。  相似文献   

5.
In this paper, we propose a distributed cross‐layer resource allocation algorithm for wireless cooperative networks based on a network utility maximization framework. The algorithm provides solutions to relay selections, flow pass probabilities, transmit rate, and power levels jointly with optimal congestion control and power control through balancing link and physical layers such that the network‐wide utility is optimized. Via dual decomposition and subgradient method, we solve the utility‐optimal resource allocation problem by subproblems in different layers of the protocol stack. Furthermore, by introducing a concept of pseudochannel gain, we model both the primal direct logical link and its corresponding cooperative transmission link as a single virtual direct logical link to simplify our network utility framework. Eventually, the algorithm determines its primal resource allocation levels by employing reverse‐engineering of the pseudochannel gain model. Numerical experiments show that the convergence of the proposed algorithm can be obtained and the performance of the optimized network can be improved significantly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
甄皓琮  方旭明  朱龙杰 《电子学报》2006,34(7):1209-1215
未来无线通信网络的主要发展方向是支持多种业务.在3GPP对UMTS的规范中,将业务按其属性对服务质量(Quality of Service,QoS)要求的不同分为4类:会话类、流媒体类、交互类和背景类,除话音业务外其余3种业务都是可变比特速率业务.对该网络用户资源分配(主要是带宽的分配)若采用传统的固定分配方法,必定陷入资源利用率低下和用户QoS得不到保障的两难境地.本文针对宽带CDMA网络,提出了一种针对无线多媒体业务的动态带宽分配与优化策略,在保证用户QoS的前提下,尽可能提高资源利用率.仿真结果表明,对比传统的网络资源管理策略,该策略大大改善了系统的性能,提高了系统资源利用率.  相似文献   

7.
考虑到异构双向中继网络中存在窃听者的安全资源分配问题,为了提高中继安全性,该文研究了受限于子信道分配和功率约束的用户安全保密度问题模型,与传统的保密容量模型相比,安全保密度模型更侧重于反映用户本身的安全程度。基于此保密度模型,该文进一步考虑了不同用户的安全服务质量(Quality of Service, QoS)需求和网络公平性,联合优化功率分配、子信道分配、子载波配对,并分别通过约束型粒子群、二进制约束型粒子群优化算法和经典的匈牙利算法找到最优解,实现资源的最优分配,提高网络中合法用户的保密度。仿真结果验证了所提算法的有效性。  相似文献   

8.
Utility-Based Resource Allocation in Wireless Networks   总被引:1,自引:0,他引:1  
In this paper, we study utility-based maximization for resource allocation in the downlink direction of centralized wireless networks. We consider two types of traffic, i.e., best effort and hard QoS, and develop some essential theorems for optimal wireless resource allocation. We then propose three allocation schemes. The performance of the proposed schemes is evaluated via simulations. The results show that optimal wireless resource allocation is dependent on traffic types, total available resource, and channel quality, rather than solely dependent on the channel quality or traffic types as assumed in most existing work.  相似文献   

9.
The General Packet Radio Service (GPRS) offers performance guaranteed packet data services to mobile users over wireless frequency-division duplex links with time division multiple access, and core packet data networks. This paper presents a dynamic adaptive guaranteed Quality-of-Service (QoS) provisioning scheme over GPRS wireless mobile links by proposing a guaranteed QoS media access control (GQ-MAC) protocol and an accompanying adaptive prioritized-handoff call admission control (AP-CAC) protocol to maintain GPRS QoS guarantees under the effect of mobile handoffs. The GQ-MAC protocol supports bounded channel access delay for delay-sensitive traffic, bounded packet loss probability for loss-sensitive traffic, and dynamic adaptive resource allocation for bursty traffic with peak bandwidth allocation adapted to the current queue length. The AP-CAC protocol provides dynamic adaptive prioritized admission by differentiating handoff requests with higher admission priorities over new calls via a dynamic multiple guard channels scheme, which dynamically adapts the capacity reserved for dealing with handoff requests based on the current traffic conditions in the neighboring radio cells. Integrated services (IntServ) QoS provisioning over the IP/ATM-based GPRS core network is realized over a multi-protocol label switching (MPLS) architecture, and mobility is supported over the core network via a novel mobile label-switching tree (MLST) architecture. End-to-end QoS provisioning over the GPRS wireless mobile network is realized by mapping between the IntServ and GPRS QoS requirements, and by extending the AP-CAC protocol from the wireless medium to the core network to provide a unified end-to-end admission control with dynamic adaptive admission priorities.  相似文献   

10.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
针对基于中继的OFDM蜂窝网络,该文考虑具有不同QoS要求的混合业务场景,引入合作传输机制,提出了一种基于合作中继的QoS感知资源调度算法,解决了合作中继节点选取,子载波分配以及功率控制等问题。以最大化系统效用为目标,在考虑QoS业务的速率要求与基站功率约束的同时,针对中继结构引入了中继节点的功率约束。为降低计算复杂度,将原非线性组合优化问题分解为子载波分配与功率控制两个子问题。仿真结果表明,该文所提算法在能量节约、系统效用,吞吐量等性能方面都有显著优势。  相似文献   

12.
Towards satisfying the requirements of International Mobile Telecommunications–Advanced, both the Institute of Electrical and Electronics Engineers (IEEE) and Third Generation Partnership Project (3GPP) introduced revolutionary wireless technologies, exploiting advanced technologies and architectures. Both IEEE's 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)) and 3GPP's Long Term Evolution have been introduced to accommodate the increasing demand for mobile services and applications. To realize the true potential of these technologies, however, opportunistic frameworks for radio resource management must be designed to exploit the adaptive nature of mobile traffic. The utility optimized quality‐of‐service (QoS) framework proposed in this paper for the mobile WiMAX networks achieves this objective. To maintain support for QoS guarantees, the framework capitalizes on the adaptive nature of WiMAX traffic by individually linking connections with a utility function designed to both uphold the end users’ perceived performance and determine bandwidth allocations by a search tree maximization algorithm. In doing so, bandwidth utilization is maximized for all active connections, and blocking and dropping probabilities for new and handover calls, respectively, are minimized. The framework is evaluated through an extensive simulation model and is shown to outperform state‐of‐the‐art solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Dan Liao  Lemin Li 《ETRI Journal》2007,29(1):120-123
In this letter, we address the problem of resource allocation with efficiency and quality of service (QoS) support in uplink for a wireless CDMA network supporting real‐time (RT) and non‐realtime (NRT) communication services. For RT and NRT users, there are different QoS requirements. We introduce and describe a new scheme, namely, traffic aided uplink opportunistic scheduling (TAUOS). While guaranteeing the different QoS requirements, TAUOS exploits the channel condition to improve system throughput. In TAUOS, the cross‐layer information, file size information, is used to improve fairness for NRT users. Extensive simulation results show that our scheme can achieve high system throughput in uplink wireless CDMA systems, while guaranteeing QoS requirements.  相似文献   

14.
提出一种基于传输速率自适应的动态带宽分配算法,为异构无线网络中的多业务提供服务质量保证。根据所提的传输速率优先级决策模型,在传输速率QoS需求和异构网络容量约束的条件下,通过动态调整不同网络中各个移动终端所支持业务的传输速率来得到最优带宽重分配矩阵,以最大化整个异构网络的效用函数;将自适应带宽重分配问题描述为一个优化问题,采用动态优化的迭代算法自适应调节用户传输速率来进一步最大化该效用函数。理论分析和数值仿真结果表明,所提算法在给定传输速率且满足QoS需求的基础上,能够最大化网络的效用函数并减小新呼叫的阻塞概率。  相似文献   

15.
Network selection mechanisms have a significant role in guaranteeing the QoS for users in a heterogeneous wireless networks environment. These mechanisms allow the selection of an optimal wireless network to satisfy the needs of users. Users are provided with the opportunity to select from multiple connectivity opportunities available all over various wireless networks. Furthermore, the network operators themselves can execute active selection strategies that facilitate proper decision making, in which user preferences are considered. This study proposes a new noncooperative competing game‐theoretic model and strategy space based on user preference. This model can solve network selection problems and capture the inter‐linkages of decisions taken by various networks. A generalized simple additive weighting method is incorporated into the framework of noncooperative game theory. In addition, the utility function is employed to assess the usefulness of the system. Simulation results and analysis illustrate the efficacy of the suggested model in attaining optimum network utility for heterogeneous wireless networks while optimizing user satisfaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
针对双连接可行的异构无线网络中关于用户关联和回传带宽配置的联合优化问题,构建了一个新的网络吞吐量效用和最大化框架。将该联合优化问题建模为一个非凸的混合整数分式优化问题。为了便于求解,首先将原建模问题进行去分式化转换,然后针对转换后依旧非凸的混合整数非线性优化问题,将其分解为两个优化子问题分别求解。通过固定用户关联变量,得到了最优的回传带宽配置机制;通过固定回传带宽配置因子变量,提出一个有效的迭代算法求解双连接可行的用户关联子问题。相比固定的回传带宽配置机制,所提算法可以获得最优的回传单位带宽配置因子值,同时拥有最优的系统吞吐量和系统吞吐量效用和性能。  相似文献   

17.
The IEEE 802.22 standard based on wireless Cognitive Radio (CR) is an optimal solution to resolve the inefficient spectrum utility problem. In this paper, we focus on the spectrum allocation in IEEE 802.22 mesh networks and propose a new graph-theory algorithm. The algorithm aims at two objectives: one is the sum of the allocated channel bandwidth is maximum, and the other is the number of users can be active simultaneity is maximum. In this proposed algorithm, the topology of network was modeled as a general graph and could be transformed into a weighted complete bipartite-graph by three processes. The simulations show that the presented algorithm can improve the performance of spectrum allocation.  相似文献   

18.
对经济学方法在无线资源管理中的应用进行了研究,考虑业务、用户、资源等多个域,将无线资源分配看作生产–消费模型,兼顾用户公平性原则,针对不同业务的QoS(quality of service)要求采用不同的资源分配方法,建立了基于社会福利最大化的资源分配模型。采用基于用户柔性业务的调度算法优化所提模型,综合考虑用户效用、网络效益以及运营商收益,实现了基于社会福利最大化的柔性业务资源分配。仿真结果验证了所提算法的优越性。  相似文献   

19.
Ideally, networks should be designed to accommodate a variety of different traffic types, while at the same time maximizing its efficiency and utility. Network utility maximization (NUM) serves as an effective approach for solving the problem of network resource allocation (NRA) in network analysis and design. In existing literature, the NUM model has been used to achieve optimal network resource allocation such that the network utility is maximized. This is important, since network resources are at premium with the exponential increase in Internet traffic. However, most research work considering network resource allocation does not take into consideration key issues, such as routing and delay. A good routing policy is the key to efficient network utility, and without considering the delay requirements of the different traffic, the network will fail to meet the user’s quality of service (QoS) constraints. In this paper, we propose a new NUM framework that achieves improved network utility while taking into routing and delay requirements of the traffic. Then, we propose a decomposition technique-based algorithm, D-NUM, for solving this model efficiently. We compare our approach with existing approaches via simulations and show that our approach performs well.  相似文献   

20.
With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user’s utility, the network operator’s utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator’s utility, while IEP has better user’s utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号