首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the joint relay selection and spectrum allocation problem for multi-user and multi-relay cellular networks, and per-user fairness and system efficiency are both emphasized. First, we propose a new data-frame structure for relaying resource allocation. Considering each relay can support multiple users, a \(K\) -person Nash bargaining game is formulated to distribute the relaying resource among the users in a fair and efficient manner. To solve the Nash bargaining solution (NBS) of the game, an iterative algorithm is developed based on the dual decomposition method. Then, in view of the selection cooperation (SC) rule could help users achieve cooperation diversity with minimum network overhead, the SC rule is applied for the user-relay association which restricts relaying for a user to only one relay. By using the Langrangian relaxation and the Karush–Kuhn–Tucker condition, we prove that the NBS result of the proposed game just complies with the SC rule. Finally, to guarantee the minimum rate requirements of the users, an admission control scheme is proposed and is integrated with the proposed game. By comparing with other resource allocation schemes, the theoretical analysis and the simulation results testify the effectiveness of the proposed game scheme for efficient and fair relaying resource allocation.  相似文献   

2.
In Long Term Evolution Advanced networks with Type I in‐band half‐duplex decode‐and‐forward relay nodes, proportional fair (PF) resource allocation is aiming at guaranteeing two‐hop match and optimising global proportional fairness. The two‐hop match is defined as equal data rates in the access links and the corresponding backhaul links. The global proportional fairness is between all the user equipments served by the evolved nodes B and the relay nodes. Existing centralised schemes achieve these targets at the cost of enormous channel state information (CSI) exchange. Existing distributed schemes focus on resource partitioning and employ a traditional single‐hop PF scheduling algorithm in access links, with less CSI exchange. The traditional PF scheduling algorithm maximises single‐hop proportional fairness between the data rates in the access links rather than two‐hop proportional fairness between the end‐to‐end data rates in the two hops. In order to reduce CSI exchange and at the same time to maximise the two‐hop proportional fairness, a distributed two‐hop PF resource allocation scheme is proposed. The proposed scheme includes two‐hop PF resource scheduling algorithms and adaptive resource partitioning algorithms, applied in different two‐hop transmission protocols. Simulation results demonstrate the proposed scheme is better than the existing distributed schemes in obtaining better proportional fairness and larger cell‐edge user equipment throughputs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a resource allocation scheme is proposed for multi-cell OFDMA systems in downlink under the fractional frequency reuse environments. The objective considers balancing between the maximization of the system throughput and the satisfaction of the user’s data rate requirement. Due to the severe co-channel interference for cellular networks with full frequency reuse, a dynamic fractional frequency reuse scheme is adopted in the cellular network which divides all subcarriers in each cell into two groups: a super group and a regular group. The dynamic fractional frequency reuse scheme can guarantee the intra-cell orthogonality and reduce the inter-cell interference. Therefore, the procedure of the proposed resource allocation scheme includes two main parts: frequency partition and subcarrier allocation. First, each subcarrier is assigned to either the super group or the regular group based on designed functions in all cells. Second, we allocate subcarriers to users by utilizing the designed functions. The designed functions are developed based on the proportional fairness scheduling, the logarithm transformation, and the Lagrangian technique. The designed function is coupled with the instantaneous data rate, the average data rate, and the data rate requirement. Simulation results show that the proposed scheme provides a higher system throughput and improves the outage probability compared with existing schemes.  相似文献   

4.
Considering practical constraints in the single-carrier frequency division multiple access system, this paper proposes a jointed resource allocation and multiuser pairing algorithm with low complexity. It initially schedules the first user and carries out resource allocation and then selects the second and following pairing users in turn. Meanwhile, the proportional fair criterion is considered independently in the scheduling process for every pairing user. The simulation results show that, excluding its considerably lower complexity, the proposed algorithm has better throughput and fairness than the existing algorithms.  相似文献   

5.
This paper studies the resource allocation (RA) and the relay selection (RS) problems in cooperative relaying (CR) based multiuser ad hoc networks, and a multiuser cooperative game is proposed to stimulate selfish user nodes to participate in the CR. The novelty of the game scheme lies in that it takes explicit count of that a wireless user can act as a data-source as well as a potential relay for other users. Consider a user has the selfish incentive to consume his/her spectrum resource solely to maximize his/her own data-rate and the selection cooperation (SC) rule which restricts relaying for a user to only one relay is explicitly imposed. To stimulate user nodes to share their energy and spectrum resource efficiently in the Pareto optimal sense, first, we formulate the RA problem for multiuser CR as a bargaining game. By solving the Nash bargaining solution of the game, Pareto optimal RA for cooperative partners can be achieved. Next, to implement the SC-rule imposed RS, a simple heuristic is proposed with the main method being to maintain the long-term priority fairness for cooperative partner selection for each selfish user. The proposed RS with RA (RS-RA) algorithm has a low computational complexity of $O(K^{2})$ , where $K$ is the number of users in a network. Simulation results demonstrate the system efficiency and fairness properties of the proposed bargaining game theoretic RS-RA scheme.  相似文献   

6.
由于HSDPA和LTE系统在资源分配上的差异,现有LTE中继系统的调度算法已不适用于HSDPA中继系统.因此提出了一种适合HSDPA中继系统的比例公平调度算法。将文中提出的全局公平性调度方案与没有中继的HSDPA系统,以及两层PF调度算法进行了比较。通过系统仿真结果表明,调度算法能够在提高用户吞吐率的同时保证多用户之间的公平性要求。  相似文献   

7.
A flexible downlink scheduling scheme in cellular packet data systems   总被引:1,自引:0,他引:1  
Fast downlink scheduling algorithms play a central role in determining the overall performance of high-speed cellular data systems, characterized by high throughput and fair resource allocation among multiple users. We propose a flexible channel-dependent downlink scheduling scheme, named the (weighted) alpha-rule, based on the system utility maximization that arises from the Internet economy of long-term bandwidth sharing among elastic-service users. We show that the utility as a function of per-user mean throughput naturally derives the alpha-rule scheme and a whole set of channel-dependent instantaneous scheduling schemes following different fairness criteria. We evaluate the alpha-rule in a multiuser CDMA high data rate (HDR) system with space-time block coding (STBC) or Bell Labs layered space-time (BLAST) multiple-input multiple-output (MIMO) channel. Our evaluation shows that it works efficiently by enabling flexible tradeoff between aggregate throughput, per-user throughput, and per-user resource allocation through a single control parameter. In other words the Alpha-rule effectively fills the performance gap between existing scheduling schemes, such as max-C/I and proportional fairness (PF), and provides an important control knob at the media-access-control (MAC) layer to balance between multiuser diversity gain and location-specific per-user performance.  相似文献   

8.
In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.  相似文献   

9.
Resource allocation problem in multiuser multiple input single output-orthogonal frequency division multiple access (MISO-OFDMA) systems with downlink beamforming for frequency selective fading channels is studied. The article aims at maximizing system throughput with the constraints of total power and bit error rate (BER) while supporting fairness among users. The downlink proportional fairness (PF) scheduling problem is reformulated as a maximization of the sum of logarithmic user data rate. From necessary conditions on optimality obtained analytically by Karush-Kuhn-Tucker (KKT) condition, an efficient user selection and resource allocation algorithm is proposed. The computer simulations reveal that the proposed algorithm achieves tradeoff between system throughput and fairness among users.  相似文献   

10.
As the system performance is obviously improved by introducing the concept of relay into the traditional orthogonal frequency division multiple access(OFDMA)systems,resource scheduling in relay-enhanced OFDMA systems is worthy of being studied carefully.To solve the optimization problem of achieving the maximum throughput while satisfying the quality of service(QoS)and guaranteeing the fairness of users,a novel resource scheduling scheme with QoS support for the downlink of two-hop relay-enhanced OFDMA systems is proposed.The proposed scheme,which is considered both in the first time sub-slot between direct link users and relay stations,and the second time sub-slot among relay link users,takes QoS support into consideration,as well as the system throughput and the fairness for users.Simulation results show that the proposed scheme has good performance in maximizing system throughput and guaranteeing the performance in the service delay and the data loss rate.  相似文献   

11.
Wireless mesh networks (WMNs) extend the limited transmission coverage of wireless LANs by enabling users to connect to the Internet via a multi-hop relay service provided by wireless mesh routers. In such networks the quality of experience (QoE) depends on both the user location relative to the Internet gateway and the traffic load. Various channel access or queue management schemes have been proposed for achieving throughput fairness among WMN users. However, delay and bandwidth utilization efficiency of such schemes may be unacceptable for real-time applications. Accordingly, the present study proposes a proportional bandwidth allocation scheme with a delay constraint consideration for enhancing the QoE of users of WMNs based on the IEEE 802.11e standard. An analytical model of the proposed scheme is provided. Moreover, the performance of the proposed scheme is systematically compared with that of existing bandwidth allocation methods. The simulation results show that the proposed scheme outperforms previously proposed schemes in terms of both an improved throughput fairness among the WMN users and a smaller end-to-end transmission delay.  相似文献   

12.
自适应OFDMA系统无线资源分配和分组数据调度算法的研究   总被引:1,自引:0,他引:1  
在对无线资源分配和下行链路分组数据调度算法研究的基础上,提出了一种适应于自适应OFDMA系统的联合算法,即K&H/MPF算法。理论分析和仿真结果表明:该算法在满足不同用户QoS要求的前提下,不但能够提供比多载波正比公平调度器更高的容量增益,而且以极大的灵活性实现了用户数据的公平发送。  相似文献   

13.
In this paper, to optimize the average delay and power allocation (PA) for system users, we propose a resource scheduling scheme for wireless networks based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) according to the first fifth-generation standards. For delay minimization, we solve a throughput maximization problem that considers CP-OFDM systems with carrier aggregation (CA). Regarding PA, we consider an approach that involves maximizing goodput using an effective signal-to-noise ratio. An algorithm for jointly solving delay minimization through computation of required user rates and optimizing the power allocated to users is proposed to compose the resource allocation approach. In wireless network simulations, we consider a scenario with the following capabilities: CA, 256-Quadrature Amplitude Modulation, millimeter waves above 6 GHz, and a radio frame structure with 120 KHz spacing between the subcarriers. The performance of the proposed resource allocation algorithm is evaluated and compared with those of other algorithms from the literature using computational simulations in terms of various Quality of Service parameters, such as the throughput, delay, fairness index, and loss rate.  相似文献   

14.
In this paper,we focus on the resource scheduling in the downlink of long term evolution advanced (LTE-A) assuming equal power allocation among subcarriers.Considering the backward compatibility,the LT...  相似文献   

15.
In this paper, we propose a joint resource allocation, routing, and connection admission control (CAC) scheme for uplink transmission in orthogonal frequency division multiple access (OFDMA) relay networks with cooperative relaying. For cooperative relaying, relay station can relay uplink data from mobile station (MS) to base station with cooperation of the MS using transmit diversity. Transmit diversity can be achieved by virtual MISO via distributed space–time coding. The proposed scheme jointly allocates OFDMA resources and selects path for each user with CAC to maximize the upink throughput of cooperative OFDMA relay networks. The basic OFDMA resource unit is considered as a resource element which is one subcarrier over one OFDMA symbol. An efficient multi-choice multi-dimensional knapsack (MMKP) algorithm is presented for the proposed scheme. The proposed MMKP algorithm provides a unified framework which is applicable to OFDMA networks with and without cooperative relaying. We evaluate the performance of the proposed scheme with and without cooperative relaying in a hilly terrain with heavy tree density by using OPNET-based simulation. We show that the cooperative relaying improve the uplink system throughput compared with non-cooperative relaying, and the proposed scheme outperforms the conventional link quality-based scheme in both cooperative and non-cooperative relay networks.  相似文献   

16.
In this letter, a heuristic channel allocation and scheduling scheme is proposed. By comparing the size of the alternative‐factor assessment, which is obtained by simple calculation, we can easily find the most appropriate channel for each user for overall throughput enhancement. Numerical results show that the downlink throughput of the proposed scheme is higher than that of proportional fairness and is almost the same as that of the maximum C/I scheme, while user fairness remains better than that of the maximum C/I scheme.  相似文献   

17.
无线多址接入中继网络中,用户可选择是否接入中继,同时中继也可选择所服务的用户。在中继处应用网络编码技术可使单个中继同时服务于2个用户共享同一时频资源进行无干扰信息传输。基站采用联合检测方法恢复原始信息,从而得到传输速率的提升。针对多用户多中继场景,为了进一步提升系统的吞吐量,需要为用户选择合适的中继协助其传输,考虑到多址网络编码中继的中继选择问题是一个复杂的优化问题,为了降低其求解复杂度,分别采用基于贪婪准则和考虑用户公平性的信道分配算法进行求解。仿真结果表明,所提信道分配算法相比于随机信道分配可获得较大的性能增益,并且基于贪婪准则的算法性能优于考虑用户公平性的算法。  相似文献   

18.
Li  Xianguo  Ding  Xuelong  Li  Kunlai  Li  Jianxiong  Shi  Weiguang 《Mobile Networks and Applications》2020,25(5):1663-1672

This paper investigates the relay energy allocation scheme based on the time switching (TS) operation strategy in multi-user simultaneous wireless information and power transfer (SWIPT) relaying system, where the relay is energy-constrained and utilizes the energy harvested in the energy harvesting mode to amplify and forward the information of the users. In the multi-user relaying system, the distances of the receivers of the users to the relay may be different. Thus, the total information rate maximization model is proposed and the corresponding energy allocation scheme is derived. After comparing the information rates of users, it is found that the information rates of users who are far from the relay are significantly lower than those of users who are close to the relay, i.e., “far-near” phenomenon. For the “far-near” problem, we propose the common information rate maximization model, and derive the corresponding energy allocation scheme. In this model, the information rates of all users are equal, which ensures the fairness of the information rate in multi-user relaying communication system. The simulation results show that the energy allocation scheme based on the common information rate maximization model can effectively solve the “far-near” problem in multi-user relaying communication system.

  相似文献   

19.
针对采用全局频率复用的中继增强的无线蜂窝多小区系统,该文考虑多种通信模式并存的混合场景,提出了一种干扰感知的联合资源分配策略。以最大化系统总吞吐量为目标,同时考虑小区间干扰对中继节点与移动站点的影响,以及基站与中继节点各自的发射功率约束。为了降低计算复杂度,针对用户与中继节点配对问题提出了一种基于小区间干扰的调度算法;针对功率控制问题分别提出了一种基于符号规划的最优功率分配算法和一种次优的最小能耗功率分配算法。仿真结果表明,该文所提算法逼近最优资源分配,在系统吞吐量与能量效率等性能方面具有显著优势。  相似文献   

20.
Adaptive Max SNR Packet Scheduling for OFDM Wireless Systems   总被引:1,自引:1,他引:0  
In this paper, we consider scheduling and resource allocation for a downlink in a wireless OFDM system. If each broadcast sub channel is allocated to a user according to max SNR selection, optimal system throughput is obtained for the cost of a significant loss in fairness among users. As a solution to resolve this issue and in an attempt at reaching a compromise between fairness and throughput, we propose to add to the max SNR scheme a weak control based on user QoS requirements. In this work, user latency between two successive channel accesses is considered as a parameter for the control. The feedback of quantized channel state information (CSI) is proposed to reduce the feedback burden. Performance analysis of the proposed scheme has been presented to illustrate the capacity-fairness-feedback trade-off of the considered scheme compared to max SNR and proportional fair algorithms used as benchmark.
Noureddine HamdiEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号