首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herein, we demonstrate a novel silver nanocluster-based fluorescent system for the detection of nicotinamide adenine dinucleotide (NAD+), an important biological small molecule involved in a wide range of biological processes. A single-stranded dumbbell DNA probe was designed and used for the assay, which contained a nick in the stem, a poly-cytosine nucleotide loop close to 5′ end as the template for the formation of highly fluorescent silver nanoclusters (Ag NCs) and another loop close to 3′ end. Only in the presence of NAD+, the probe was linked at 5′ and 3′ ends by Escherichia coli DNA ligase, which blocked the DNA polymerase-based extension reaction, ensuring the formation of fluorescent Ag NCs. This technique provided a logarithmic linear relationship in the range of 1 pM–500 nM with a detection limit of as low as 1 pM NAD+, and exhibited high selectivity against its analogues, and was then successfully used for the detection of NAD+ level in four kinds of cell homogenates. In addition, this new approach was conducted in an isothermal and homogeneous condition without the need of any thermal cycling, washing, and separation steps, making it very simple. Overall, this label-free protocol offers a promising alternative for the detection of NAD+, taking advantage of specificity, sensitivity, cost-efficiency, and simplicity.
Figure
Ligation triggered fluorescent silver nanoclusters system for nicotinamide adenine dinucleotide sensing  相似文献   

2.
We report on the first application of novel, water-soluble and fluorescent silver nanoclusters (Ag NCs) in a chemiluminescent (CL) detection system. A method has been developed for the determination of copper(II) ion that is based on the fact that the weak CL resulting from the redox reaction between Ce(IV) ion and sulfite ion is strongly enhanced by the Ag NCs and that the main CL signals now originate from Ag NCs. UV-visible spectra, CL spectra and fluorescent (FL) spectra were acquired to investigate the enhanced CL mechanism. It is proposed that the electronic energy of the excited state intermediate SO2* that originates from the CL reaction is transferred to Ag NCs to form an electronically excited NC whose emission is observed. In addition, it is found that copper(II) is capable of inhibiting the CL of the nanoclusters system, but not if other common metal ions are present. The detection of copper(II) is achieved indirectly by measuring the CL intensity of Ag NCs. Under the optimized experimental conditions, a linear relationship does exist between the intensity of CL and the concentrations of copper(II) in the range of 0.2?nM to 0.1?m??. The detection limit is 0.12?nM. The method is applied to the determination of copper(II) ion in tap water with satisfactory results.
Figa
We report the first application of novel, water-soluble and fluorescent silver nanoclusters in a chemiluminescent detection system. It was found that Ag NCs acted as the luminophor and energy acceptor. A method has been developed for the determination of copper(II) ion that is based on the fact that the capable of inhibiting the CL of the nanoclusters system.  相似文献   

3.
We report on the application of nanocrystals (NCs) of the type Y2O3: Eu,Zn as a probe for the fluorescent detection of biotin in aqueous solution. The NCs were dispersed in water in the presence of various surface modifiers including mercaptoethanol (ME), monoethanolamine and ethylene glycol. Both the absorbance of surfactant and the stability of the suspensions were investigated in order to optimize the experimental conditions. ME is found to be the most suitable surfactant for stabilization of the suspended NCs. Their photoluminescence intensity is found to be quenched by biotin. The Stern-Volmer constant for the quenching process is 7.6?×?103 M?1. This NC probe can be applied to the detection of biotin in the 1–60 μM concentration range with detection limit of 1.89 μM. The possible mechanisms of quenching also are discussed.
Figure
Photograph of cuvettes containing the modified Y2O3: Eu, Zn NCs suspension with and without biotin before (A, B) and after (C, D) excitation with UV lamp (254 nm).  相似文献   

4.
We have developed a surface-enhanced Raman scattering (SERS) probe for the determination of mercury(II) using methimazole-functionalized and cyclodextrin-coated silver nanoparticles (AgNPs). These AgNPs in pH 10 solution containing sodium chloride exhibit strong SERS at 502 cm?1. Its intensity strongly decreases in the presence of Hg(II). This effect serves as the basis for a new method for the rapid, fast and selective determination of trace Hg(II). The analytical range is from 0.50 μg L?1 to 150 μg L?1, and the limit of detection is 0.10 μg L?1. The influence of 11 metal ions commonly encountered in environmental water samples was found to be quite small. The method was applied to the determination of Hg(II) in spiked water samples and gave recoveries ranging from 98.5 to 105.2 % and with relative standard deviations of <3.5 % (n?=?5). The total analysis time is <10 min for a single sample.
Figure
A high-sensitive SERS probe for the determination of Hg2+ using methimazole-functionalized cyclodextrin-protected AgNPs was designed. The limit of detection is 0.10 μg L?1.  相似文献   

5.
We report on a novel mercury(II)-controlled approach for the disassembly of gold nanorods (AuNRs) that has led to a detection system for Hg(II). The modified AuNRs were fabricated by functionalizing AuNRs with L-cysteine via a thiol group chemisorption-type of interaction. L-cysteine induces the assembly of AuNRs through cooperative electrostatic interaction upon which the color of the solution of the AuNRs changes from blue-green to gray dark. The addition of Hg(II), in turn, causes the disassembly of the modified AuNRs and the color of the solution returns to blue-green. This effect enables the optical determination of Hg(II) in aqueous solution, with a linear response in the 0.5 to 250 μM Hg(II) concentration range, an excellent selectivity for Hg(II), and with recoveries ranging from 99 % to 106 % in spiked environmental water samples.
Figure
A novel mercury-controlled approach for the disassembly of L-cysteine-modified Au nanorods was proposed, with which a simple, specific and sensitive assay for Hg2+ was developed.  相似文献   

6.
A novel type of porous metal-organic framework (MOF) was obtained from thiol-modified silica nanoparticles and the copper(II) complex of trimesic acid. It is shown that this nanocomposite is well suitable for the preconcentration of Hg(II) ions. The nanocomposite was characterized by Fourier transfer infrared spectroscopy, X-ray powder diffraction, energy-dispersive X-ray diffraction and scanning electron microscopy. The effects of pH value, sorption time, elution time, the volume and concentration of eluent were investigated. Equilibrium isotherms were studied, and four models were applied to analyze the equilibrium adsorption data. The results revealed that the adsorption process obeyed the Langmuir model. The maximum monolayer capacity and the Langmuir constant are 210 mg g?1 and 0.273 L mg?1, respectively. The new MOF-based nanocomposite is shown to be an efficient and selective sorbent for Hg(II). Under the optimal conditions, the limit of detection is 20 pg mL?1 of Hg(II), and the relative standard deviation is <7.2 % (for n?=?3). The sorbent was successfully applied to the rapid extraction of Hg(II) ions from fish, sediment, and water samples.
Figure
Schematic illustration of Hg(II) sorption onto SH@SiO2/MOF nanocomposite.  相似文献   

7.
We report on the synthesis of polymeric nanoparticles (PNPs) containing a tetrakis(3-hydroxyphenyl)porphyrin, and their use for the separation of mercury(II) ion. The PNPs were prepared by bulk polymerization from methacrylic acid (the monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator) and the mercury(II) complex of 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The Hg(II) ion was then removed by treatment with dilute hydrochloric acid. The PNPs were characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. The material is capable of binding Hg(II) from analyte samples. Bound Hg(II) ions can be eluted with dilute nitric acid and then quantified by cold vapor AAS. The extraction efficiency, the effects of pH, preconcentration and leaching times, sample volume, and of the nature, concentration and volume of eluent were investigated. The maximum adsorption capacity of the PNPs is 249 mg g?1, the relative standard deviation of the AAS assay is 2.2 %, and the limit of detection (3σ) is 8 ng.L?1. The nanoparticles exhibit excellent selectivity for Hg(II) ion over other metal ions and were successfully applied to the selective extraction and determination of Hg(II) ion in spiked water samples.
Figure
Schematic presentation of leaching process of mercury(II) ion from the prepared IIP  相似文献   

8.
We describe a solid phase extractor for selective separation and preconcentration of Hg(II) ion. It was prepared by immobilizing the adduct of diethylenetriamine and thiourea on silica gel. The effects of solution acidity, preconcentration time, sample flow rate and volume were optimized. The results show that Hg(II) can be selectively extracted from acidic solutions and in presence of common other metal ions. The adsorbent is stable, can be reused more than 10 times, and the maximum adsorption capacity is 23 mg g?1. Hg(II) was quantified by inductively coupled plasma optical emission spectrometry. The method has a detection limit of 23 ng L?1, and the relative standard deviation is <2 %. The procedure was validated by analyzing two standard materials (river sediment and hair powder), and was successfully applied to the preconcentration of Hg(II) in real samples.
Figure
A solid phase extractor was firstly prepared by immobilizing DETA-TU (equimolar adduct of diethylenetriamine and thiourea) on the silica gel, which was applied to selectively separate/preconcentrate trace Hg(II) from real samples  相似文献   

9.
Rijun Gui  Yanfeng Wang  Jie Sun 《Mikrochimica acta》2014,181(11-12):1231-1238
We report on a simple and sensitive method for the determination of the total amount of cysteine (Cys) and homocysteine (hCys), [Cys plus hCys], by exploiting the effect of Cys and hCys on the photoluminescence of human serum albumin-stabilized gold-core silver-shell nanocrystals (NCs). If Cys (or hCys) are added to these NCs, Cys (or hCys) will be adsorbed on the surface due to ligand exchange with human serum albumin, and this results in the quenching of the luminescence of the NCs. The addition of mixtures of Cys and hCys in different molar ratios also induces a decrease in luminescence whose intensity is linearly related to the concentration of [Cys plus hCys] in the range from 0.1 – 5.0 μM, with a correlation coefficient (R 2) of 0.9953 and a detection limit of 15 nM. The method is highly selective and sensitive over other α-amino acids, water-soluble thiols, and biomolecules. It has been successfully applied to the determination of the concentration of [Cys plus hCys] in spiked solutions of biomolecules and in real biological samples.
Human serum albumin stabilized gold/silver nanocrystals (HSA-Au/Ag NCs) were prepared and developed towards PL detection of the total amount of cysteine (Cys) and homocysteine (hCys).  相似文献   

10.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

11.
We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35?nM.
Figure
A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.  相似文献   

12.
We report on the synthesis of water-soluble luminescent colloidal CdTe nanocrystals capped with various stabilizers (mercaptopropanol, thioglycolic acid, mercaptosuccinic acid, mercaptopropionic acid, L-cysteine, reduced L-glutathione, mercaptoethanol and dimethylaminoethanethiol), and their use as fluorescent probes for chromium(VI) ions. The results show that Cr(VI) ions can be ultrasensitively detected with CdTe NCs capped with dimethylaminoethanethiol (DMAET), with high selectivity over Cr(III) and other ions. Synchronous fluorescence spectroscopy was applied to quantify trace levels of Cr(VI) ions with this probe in the 3.0 nM to 0.2 μM concentration range, with a detection limit as low as 0.57 nM. The interaction between the nanocrystals and Cr(VI) ions was investigated in a study on the zeta potentials, UV-Vis absorption spectroscopy and time-resolved luminescence spectroscopy. Electron transfer process occurred and the decay times of the probe remain constant (about 14 ns). This simple and ultrasensitive analytical method was successfully applied to the direct determination of Cr(VI) in spiked samples of environmental waters.
Graphical Abstract
Compared with other stabilizers capped CdTe NCs, dimethylaminoethanethiol (DMAET) capped CdTe NCs have an extraordinary ability to detect Cr(VI) ions.  相似文献   

13.
We report on a simple method for the determination of iodide in aqueous solution by exploiting the fluorescence enhancement that is observed if the complex formed between carbon dots and mercury ion is exposed to iodide. Fluorescent carbon dots (C-dots) were treated with Hg(II) ion which causes quenching of the emission of the C-dots. On addition of iodide, the Hg(II) ions are removed from the complex due to the strong interaction between Hg(II) and iodide. This causes the fluorescence to be restored and enables iodide to be determined in the 0.5 to 20 μM concentration range and with a detection limit of ~430 nM. The test is highly selective for iodide (over common other anions) and was used for the determination of iodide in urine.
Figure
A“turn-on” fluorescent probe based on carbon dots was obtained and using it to determine the concentration of iodide according to the fluorescent enhancement in aqueous solution  相似文献   

14.
Silver nanoparticles (Ag NPs) modified with sodium 2-mercaptoethanesulfonate (mesna) exhibit strong surface-enhanced Raman scattering (SERS). Their specific and strong interaction with heavy metal ions led to a label-free assay for Hg(II). The covalent bond formed between mercury and sulfur is stronger than the one between silver and sulfur and thus prevents the adsorption of mesna on the surface of Ag NPs. This results in a decrease of the intensity of SERS in the presence of Hg(II) ions. The Raman peak at 795?cm?1 can be used for quantification. The effect of the concentration of mesna, the concentration of sodium chloride, incubation time and pH value on SERS were optimized. Under the optimal conditions, the intensity of SERS decreases with increasing concentration of Hg(II). The decrease is linear in the 0.01 and 2?μmol L?1 concentration range, with a correlation coefficient (R2) of 0.996 and detection limit (S/N?=?3) is 0.0024?μmol L?1. The method was successfully applied to the determination of the Hg(II) in spiked water samples.
Figure
SERS spectra of mesna-Ag NPs system in the presence of Hg2+. Concentrations of Hg2+: (1) 0.1×10-7, (2) 1×10-7, (3) 3.5×10-7, (4) 5×10-7, (5) 12×10-7, (6) 20×10-7mol L-1  相似文献   

15.
Water-soluble CuInS2 quantum dots (QDs) stabilized with 3-mercaptopropionic acid were synthesized in aqueous solution and then coated with bovine serum albumin. The resulting particles display fluorescence with a peak at 680 nm that is effectively quenched by 1, 4-dihydro-nicotinamide adenine dinucleotide (NADH), but not by 1, 4-nicotinamide adenine dinucleotide (NAD+). The enzyme lactate dehydrogenase catalyzes the reduction of pyruvate and dehydrogenation of lactic acid using NAD+ or NADH as a cosubstrate. The new QDs were applied to monitor the course of lactate dehydrogenase-catalyzed reaction of pyruvate by detecting NADH via its quenching effect. This resulted in a convenient and selective detection scheme for pyruvate. The detection limit is as low as 25 nM.
Figure
Bovine serum albumin coated CuInS2 quantum dots (QDs) are quenched by 1,4- dihydronicotinamide adenine dinucleotide (NADH) that could react with pyruvic acid and lactate dehydrogenase. Therefore, the CuInS2 QDs could be used to detect pyruvic acid.  相似文献   

16.
We report on a protocol for a simultaneous competitive immunoassay for tetracycline (TC) and chloramphenicol (CAP) on the same sensing interface. Conjugates of TC and of CAP with bovine serum albumin were first co-immobilized on a glassy carbon electrode modified with gold nanoparticles. In parallel, monoclonal anti-TC and anti-CAP antibodies were conjugated onto CdS and PbS nanoclusters, respectively. In a typical assay, the immobilized haptens and the added target analytes competed for binding to the corresponding antibodies on the nanoclusters. Subsequently, Cd(II) and Pb(II) ions are released from the surface of the corresponding nanoclusters by treatment with acid and then were detected by square wave anodic stripping voltammetry. The currents at the peak potentials for Cd(II) and Pb(II) were used as the sensor signal for TC and CAP, respectively. This multiplex immunoassay enables the simultaneous determination of TC and CAP in a single run with dynamic ranges from 0.01 to 50 ng mL?1 for both analytes. The detection limits for TC and for CAP are 7.5 pg mL?1 and 5.4 pg mL?1, respectively. No obvious nonspecific adsorption and cross-reactivity was observed in a series of analyses. Intra-assay and inter-assay coefficients of variation were less than 10 %. The method was evaluated by analyzing TC and CAP in spiked samples of milk and honey. The recoveries range from 88 % to 107 % for TC, and from 91 % to 119 % for CAP.
Figure
We developed a new multiplexed electrochemical immunoassay for simultaneous determination of tetracycline and chloramphenicol, using metal sulfide nanoclusters as recognition elements.  相似文献   

17.
Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The physical and chemical properties of the AuNCs were studied by UV-vis absorption, fluorescence, X-ray photoelectron spectroscopy and TEM. The AuNCs-FabI conjugate was prepared by in situ reduction of tetrachloroaurate in the presence of FabI. The conjugated particles were loaded onto nylon membranes by taking advantage of the electrostatic interaction between the negatively charged AuNCs@FabI and the nylon film which is positively charged at pH 7.4. This results in the formation of a test stripe with sensor spots that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp.
Figure
Fluorescent gold nanoclusters (AuNCs) were synthesized using a drug target bacterial enoyl-ACP reductase (FabI) as a template. The synthesized AuNCs@FabI were loaded onto nylon membranes forming a paper-based sensor that can be used to detect Hg(II) ion in the 1 nM to 10 μM concentration range. The test stripes are simple, convenient, selective, sensitive, and can be quickly read out with bare eyes after illumination with a UV lamp.  相似文献   

18.
We report on a novel immunoassay for porcine pseudorabies virus (PRV) antibody that is based on fluorescence signal amplification induced by silver(I) ion exchange in CdSe nanocrystals. An antigen-antibody-secondary antibody sandwich structure was first formed from PRV, PRV antibody, and CdSe-labeled rabbit anti-pig antibody. Then, the Cd(II) ions in the CdSe labels were released by a cation exchange reaction with Ag(I). Released Cd(II) was finally quantified using the sensitive fluorescent probe Rhodamine 5 N. Due to this signal amplification, the sensitivity and linear range of the immunoassay were largely improved (compared to the traditional ELISA) in having a limit of detection as low as 1.2 ng?mL?1 of PRV antibody and a linear range from 2.44 to 312 ng?mL?1. The successful determination of PRV antibody in pig serum samples is proof for the utility of the method.
Figure
A simple, rapid and sensitive method for the detection of PRV antibody through the fluorescence signal amplification caused by cation-exchange in CdSe NCs was reported. The CdSe NCs labeled rabbit anti-pig IgG was used to capture the PRV antibody. After the immunoreaction, the Cd2+ in the CdSe labels was completely replaced by the cation-exchange reaction with Ag+. Then Cd2+sensitive fluorescence indicator Rhod-5 N was added to bind with Cd2+ and caused the fluorescence signal enhance substantially. Thus a novel method for rapid and sensitive detection of porcine pseudorabies based on the fluorescence signal amplification was developed.  相似文献   

19.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

20.
This article reports on the synthesis of water dispersible carbon quantum dots (CDs) by a one-step hydrothermal method using polyamidoamine (PAMAM) and (3-aminopropyl)triethoxysilane (APTES) as a platform and passivant. The resulting CDs are highly uniform and finely dispersed. The synergistic effect between PAMAM and APTES on the surface of the CDs results in a fluorescence that is much brighter than that of CDs modified with either APTES or PAMAM only. The fluorescence of the co-modified CDs is quenched by Hg(II) ions at fairly low concentrations. Under the optimum conditions, the intensity of quenched fluorescence drops with Hg(II) concentration in the range from 0.2 nM to 10 μM, and the detection limit is 87 fM. The effect of potentially interfering cations on the fluorescence revealed a high selectivity for Hg2+. The fluorescent probe was applied to the determination of Hg(II) in (spiked) waters and milk and gave recoveries between 95.6 and 107 %, with relative standard deviation between 4.4 and 6.0 %.
Graphical abstract Strongly fluorescent carbon quantum dots (CDs) modified with polyamidoamine (PAMAM) and 3-aminopropyltriethoxysilane (APTES) were synthesized by one-step hydrothermal strategy. The resulting co-modified CD s were used as fluorescent probe for sensitive and selective detection of Hg2+.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号