首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms for the reaction of CF3O2 with atomic hydrogen were studied with ab initio and DFT methods. The results reveal that the reaction could take place on the singlet and triplet potential energy surfaces (PES). For the singlet PES, addition/elimination and substitution mechanisms are determined, and the former one is dominant. The most favorable channel involves the association of CF3O2 with H atom to form CF3O2H (IM1) via a barrierless process, and then the O–O bond dissociates to give out CF3O + OH. The secondary product might be CF3OH + O, formed from the O–O bond cleavage in the initial adduct CF3O(H)O (IM2). Other products such as CF3 + O2H, HF + CF2O2 and O2 + CHF3 are of no importances because of higher barriers. On the triplet PES, only substitution mechanism is located. With higher barriers involving, the channels on the triplet PES could be negligible compared with the channels on the singlet PES.  相似文献   

2.
Dual-level direct dynamics method is employed to investigate the H-abstraction reaction CF3CHOHCF3 with OH radical. Two hydrogen-abstraction reaction channels are possible: one from the methylene (–CH–) position and the other from the hydroxyl (–OH) position. The minimum energy path is calculated at the B3LYP/6-311G(d,p) level, and the energetic information is further refined by a new powerful and inexpensive BMC-CCSD method. To testify the accuracy of the structures and the energies, the recently developed hybrid density functional theory BB1K and higher level MC-QCISD are applied to this system. Hydrogen-bonded complexes are presented at both reactants and products sides of these two channels, which indicating that the reaction may proceed via an indirect mechanism. The rate constants for each reaction channel are evaluated by canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide range of temperatures from 200 to 2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values in the temperature region 250–430 K. The present results indicate that the two channels are competitive. At lower temperature, the reaction occurs mainly via the hydroxyl-H-abstraction channel, while the methylene-H-abstraction channel is preferred when the temperature is higher than 273 K.  相似文献   

3.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

4.
Li Wang  Jing-yao Liu  Ze-sheng Li   《Chemical physics》2008,351(1-3):154-158
The dynamic properties of the hydrogen abstraction reactions of CF2H2 and CF3H with F atom are investigated in the temperature range of 182–2000 K. The minimum-energy path (MEP) is optimized at MP2/6-311 G(d, p) level, then the energy profiles are refined at the CCSD(T)/6-311++G(3df, 2pd) level (single-point). The theoretical rate constants, which are calculated by the variational transition state theory (VTST) including the small curvature tunneling (SCT) correction, are in good agreement with the experimental ones. It is found that the rate constant of the CF2H2 + F reaction are larger than that of the CF3H + F reaction and the activation energies exhibit in the just opposite order. This phenomenon can be rationalized by the hardness η of the halomethane molecules. The comparison of the two reactions with the CFH3 + F reaction is made. It is found that the rate constants decrease in the order of CFH3 + F > CF2H2 + F > CF3H + F. The effect of fluorine substitution leads to a dramatic increase in the activation energy and a decrease in the preexponential factor. We hope that present theoretical studies for these compounds can give further information concerning how fluorine substitution affects the rate constants of hydrogen abstraction reactions.  相似文献   

5.
This paper investigates the synthetic mechanism of trifluoroiodomethane (CF3I) in the reaction of trifluoromethane and iodine via vapor-phase catalytic reaction. It is suggested that CF2 carbene is the key intermediate and is formed in the pyrolysis process of CHF3 at high temperature. However, in pyrolysis of CHF3 under activated charcoal (AC) existing conditions, no C2F4 was detected. H2 and 2-methyl-2-butene could not trap the CF2 carbene. When treating the remained compounds on the used AC with H2, CH4 is formed on the process. It is proposed that CF2 carbene combines with AC strongly and transfers into CF3 radical on heat. In addition, it is found that the AC is not only the catalyst supporter to form CF3I, but also a co-catalyst to promote the formation of CF2 carbene and CF3 radical.  相似文献   

6.
The potential energy surfaces of the reactions CHF2CH3 − n F n (n = 1–3) + OH were investigated by MPWB1K and BMC-CCSD (single-point) methods. Furthermore, with the aid of canonical variational transition state theory including the small-curvature tunneling correction, the rate constants of the title reactions were calculated over a wide temperature range of 220–1,500 K. Agreement between the CVT/SCT rate constants and the experimental values is good. Our results show that the order of rate constants is CHF2CH2F + OH > CHF2CHF2 + OH > CHF2CF3 + OH. For reaction CHF2CH2F + OH, the 1-H-abstraction channel dominates the reaction at the whole temperature, while 2-H-abstraction channel appears to be competitive with the increase of temperature.  相似文献   

7.
The potential energy surface for the reaction of CF3S with CO is calculated at the G4//B3LYP/6-311++G(d,p) level of theory. The results show that F-abstraction and addition-elimination mechanisms are involved, and the latter one is dominant thermodynamically and kinetically. The dominant channel is the reactant addition to form CF3SCO, and then decomposes to CF3 + OCS. While the direct F-abstraction channel and CF3SCO isomerization channel are not significant for the title reaction due to higher barriers involved. The comparisons among four reactions of CX3Y + CO (X = H, F; and Y = O, S) are made to imply the similar and different properties and reactivities of the same family elements and the F- and S-substituted derivatives.  相似文献   

8.
It has been found that a mixture of (CF3SO2)2CH2 and (CF3SO2)2CBr2 can be used instead of (CF3SO2)2CHBr in the radical addition to H2CCF2; the 1:1 and 1:2 adducts have been isolated and characterized. An improved synthesis of (CF3SO2)2CBr2 is also reported.  相似文献   

9.
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560
采用密度泛函方法(MPW1PW91)在6-311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH (R1), 脱H2反应CH3S→HCS+H2 (R2)以及脱H2产物HCS异构化反应HCS→CSH (R3)的微观动力学机理. 在QCISD(t)/6- 311++G(d,p)//MPW1PW91/6-311G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200~2000 K温度区间内的速率常数kTSTkCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 结果表明, 反应 R1, R2 和R3的势垒△E分别为160.69, 266.61和241.63 kJ/mol, R1为反应的主通道. 低温下CH3S比CH2SH稳定, 高温时CH2SH比CH3S更稳定. 另外, 速率常数计算结果显示, 量子力学隧道效应在低温段对速率常数的计算有显著影响, 而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

10.
Based on our previous investigation on the reaction mechanism to produce difluorocarbene and subsequent CF3I starting with CHF3 and I2, a new route for preparing CF3I at a relative low temperature, 200 °C, has been developed via a vapor-phase catalytic reaction between hexafluoropropylene oxide with I2 in the presence of KF supported on activate charcoal as a catalyst. The influence of reaction temperature and reaction time on the amount of CF3I was investigated. In the reaction process, coke-formation was suggested on the surface of catalysts by means of BET, XPS and TG-DTA analysis. The process for the formation of CF3I and by-products is also discussed.  相似文献   

11.
The kinetic properties of the hydrogen abstraction reactions of CF3CH2F + F → CF3CHF + HF (R1) and CF3CH2Cl + F → CF3CHCl + HF (R2) have been studied by dual-level direct dynamics method. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) were obtained at the B3LYP/6-311 + G(2d,2p) level. Two complexes with energies less than that of the reactants were located in the reactant side of each reaction. The energy profiles were further refined with the interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants were evaluated over a wide temperature range of 200–2,000 K. Our calculations have shown that C–H bond activity decreases when one hydrogen atom of CF3CH3 is substituted by a fluorine atom, than when substituted with a chlorine atom. This is in good agreement with the experimental results.  相似文献   

12.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

13.
Dissociation of nitromethane has been observed when a mixture of CF2HCl and CH3NO2 is irradiated using pulsed TEA CO2 laser at 9R (24) line (1081 cm-1), which is strongly absorbed by CF2HCl but not by CH3NO2. Under low laser fluence conditions, only nitromethane dissociates, whereas at high fluence CF2HCl also undergoes dissociation, showing that dissociation occurs via the vibrational energy transfer processes from the TEA CO2 laser-excited CF2HCl to CH3NO2. Time-resolved infrared fluorescence from vibrationally excited CF2HCl and CH3NO2 molecules as well as UV absorption of CF2 radicals are carried out to elucidate the dynamics of excitation/dissociation and the chemical reactions of the dissociation products.  相似文献   

14.
In this research, thermodynamic properties of the ternary electrolyte system (MgCl2 + Mg(NO3)2 + H2O) were investigated using a potentiometric method. The galvanic cell used had no liquid junction of type: Mg-ISE|MgCl2 (mA), Mg(NO3)2 (mB), H2O|Ag/AgCl. The measurements were performed at T = 298.15 K and at total ionic strengths from 0.001 to 8.000 mol/kg for different series of salt ratios r=mMgCl2/mMg2(NO3) =1.00, 2.50, 5.00, 7.50, 10.00 and 15.00. The PVC based magnesium ion-selective electrode (Mg-ISE) and the Ag/AgCl electrode used in this work were prepared in our laboratory and showed a reasonably good Nernst response. The Pitzer ion interaction model and Harned rule were used to illustrate the ternary electrolyte system investigated. The experimental results showed that both Pitzer model and Harned rule were suitable to be used satisfactorily to describe this ternary system.  相似文献   

15.
The vaporization of DyI3(s) was investigated in the temperature range between 833 and 1053 K by the use of Knudsen effusion mass spectrometry. The ions DyI2+, DyI3+, Dy2I4+, Dy2I5+, Dy3I7+, and Dy3I8+ were detected in the mass spectrum of the equilibrium vapor. The gaseous species DyI3, (DyI3)2, and (DyI3)3 were identified and their partial pressures determined. Enthalpies and entropies of sublimation resulted according to the second- and third-law methods. The following sublimation enthalpies at 298 K were determined for the gaseous species given in brackets: 274.8±8.2 kJ mol−1 [DyI3], 356.0±11.3 kJ mol−1 [(DyI3)2], and 436.6±14.6 kJ mol−1 [(DyI3)3]. The enthalpy changes of the dissociation reactions (DyI3)2=2 DyI3 and (DyI3)3=3 DyI3 were obtained as ΔdH°(298)=193.3±5.6 and 390.3±13.0 kJ mol−1, respectively.  相似文献   

16.
A Na3V2(PO4)3 sample coated uniformly with a layer of 6 nm carbon has been successfully synthesized by a one-step solid state reaction. This material shows two flat voltage plateaus at 3.4 V vs. Na+/Na and 1.63 V vs. Na+/Na in a nonaqueous sodium cell. When the Na3V2(PO4)3/C sample is tested as a cathode in a voltage range of 2.7-3.8 V vs. Na+/Na, its initial charge and discharge capacities are 98.6 and 93 mAh/g. The capacity retention of 99% can be achieved after 10 cycles. The electrode shows good cycle performance and moderate rate performance. When it is tested as an anode in a voltage range of 1.0-3.0 V vs. Na+/Na, the initial reversible capacity is 66.3 mAh/g and the capacity of 59 mAh/g can be maintained after 50 cycles. These preliminary results indicate that Na3V2(PO4)3/C is a new promising material for sodium ion batteries.  相似文献   

17.
The areas of the fusion and crystallization peaks of K3TaF8 and K3TaOF6 have been measured using the DSC mode of the high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities and the temperature dependence of the used calorimetric method sensitivity, the values of the enthalpy of fusion of K3TaF8 at temperature of fusion 1039 K: ΔfusHm(K3TaF8; 1039 K) = (52 ± 2) kJ mol−1 and of K3TaOF6 at temperature of fusion 1055 K: ΔfusHm(K3TaOF6; 1055 K) = (62 ± 3) kJ mol−1 have been determined.  相似文献   

18.
Thin crystals of La2O3, LaAlO3, La2/3TiO3, La2TiO5, and La2Ti2O7 have been irradiated in situ using 1 MeV Kr2+ ions at the Intermediate Voltage Electron Microscope-Tandem User Facility (IVEM-Tandem), Argonne National Laboratory (ANL). We observed that La2O3 remained crystalline to a fluence greater than 3.1×1016 ions cm−2 at a temperature of 50 K. The four binary oxide compounds in the two systems were observed through the crystalline-amorphous transition as a function of ion fluence and temperature. Results from the ion irradiations give critical temperatures for amorphisation (Tc) of 647 K for LaAlO3, 840 K for La2Ti2O7, 865 K for La2/3TiO3, and 1027 K for La2TiO5. The Tc values observed in this study, together with previous data for Al2O3 and TiO2, are discussed with reference to the melting points for the La2O3-Al2O3 and La2O3-TiO2 systems and the different local environments within the four crystal structures. Results suggest that there is an observable inverse correlation between Tc and melting temperature (Tm) in the two systems. More complex relationships exist between Tc and crystal structure, with the stoichiometric perovskite LaAlO3 being the most resistant to amorphisation.  相似文献   

19.
Ab initio direct dynamics method has been used to study the title reaction. Electronic structure information including geometries, gradients and force constants (Hessians) are calculated at the UQCISD/6-311+G** level. Energies along the minimum energy path are improved by a series of single-point G2//QCISD calculations. The changes of the geometries, vibratioanal frequencies, potential energies and total curvature along the reaction path are discussed. The rate constants in the temperature range 200–3000 K are calculated by canonical variational transition state theory with small-curvature tunneling correction (CVT/SCT) method. The results show that the variational effect is small and in the lower temperature range, the small curvature tunneling effect is important for the reaction.  相似文献   

20.
Emission spectra produced by 0–1 keV electron and 1–25 keV H+ impact on CHF3 were obtained and absolute cross section for a band in the UV were determined. The latter emission between ≈ 230 and 350 nm is attributed to the CF2 (ā → X?) transition by comparison with fluorescence spectra from photolysis of CF2 containing species. An analysis of the energy dependence of the cross sections indicates that the corresponding excitation processes involve excited state(s) of CHF3 in particular the (4e)?2(3p) Rydberg state dissociating into CF2(ā) and H, F fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号