首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxygen reduction reaction (ORR) is one of the most important reactions in life processes and energy conversion systems. To alleviate global warming and the energy crisis, the development of high-performance electrocatalysts for the ORR for application in energy conversion and storage devices such as metal–air batteries and fuel cells is highly desirable. Inspired by the biological oxygen activation/reduction process associated with heme- and multicopper-containing metalloenzymes, iron and copper-based transition-metal complexes have been extensively explored as ORR electrocatalysts. Herein, an outline into recent progress on non-precious-metal electrocatalysts for the ORR is provided; these electrocatalysts do not require pyrolysis treatment, which is regarded as desirable from the viewpoint of bioinspired molecular catalyst design, focusing on iron/cobalt macrocycles (porphyrins, phthalocyanines, and corroles) and copper complexes in which the ORR activity is tuned by ligand variation/substitution, the method of catalyst immobilization, and the underlying supporting materials. Current challenges and exciting imminent developments in bioinspired ORR electrocatalysts are summarized and proposed.  相似文献   

2.
3.
The notion of metal‐free catalysts is used to refer to carbon materials modified with nonmetallic elements. However, some claimed metal‐free catalysts are prepared using metal‐containing precursors. It is highly contested that metal residues in nitrogen‐doped carbon (NC) catalysts play a crucial role in the oxygen reduction reaction (ORR). In an attempt to reconcile divergent views, a definition for truly metal‐free catalysts is proposed and the differences between NC and M‐Nx/C catalysts are discussed. Metal impurities at levels usually undetectable by techniques such as XPS, XRD, and EDX significantly promote the ORR. Poisoning tests to mask the metal ions reveal the involvement of metal residues as active sites or as modifiers of the electronic structure of the active sites in NC. The unique merits of both M‐Nx/C and NC catalysts are discussed to inspire the development of more advanced nonprecious‐metal catalysts for the ORR.  相似文献   

4.
《中国化学会会志》2017,64(12):1503-1509
The most common electrocatalysts for the oxygen reduction reaction (ORR) are platinum‐based ones. This work demonstrates the performance of iron‐containing metal organic frameworks (MOFs) as non‐platinum‐based nano‐electrocatalysts for ORR in an alkaline medium. As a new non‐platinum catalyst to achieve the active sites for the ORR, Mil‐100 (Fe) nanoparticles were used in aqueous KOH by the rotating‐disk electrode method. The main objectives of this study are the investigations on the electron transfer number (n ), Tafel slope, and catalytic performance. The particles size of the obtained powders is in the nanoscale range (approximately 25 nm). The electron transfer number for the ORR on the surface of iron‐containing catalyst is approximately 4, and the Tafel slope of diffusion‐corrected kinetic current density is ~50.7 mV per decade at low overpotential. This work might extend a new non‐precious‐metal catalyst structure for ORR for use in low‐temperature fuel cells.  相似文献   

5.
《化学:亚洲杂志》2018,13(18):2671-2676
Highly porous carbonaceous nonprecious metal catalysts for the oxygen reduction reaction are prepared by carbonization of low‐cost metalloporphyrin‐based hyper‐crosslinked polymers (MPH‐X). With high surface area (2768 m2 g−1), hierarchical porous structure, and high metal loading (9.97 wt %), the obtained hyperporous carbon MPH‐Fe/C catalyst exhibits high oxygen reduction reaction (ORR) activity with a half‐wave potential (0.816 V) that is comparable to the 0.819 V of commercial Pt/C. Stability tests reveal that MPH‐Fe/C also exhibits outstanding long‐term durability and methanol tolerance. Our findings may offer an alternative approach to produce nonprecious metal ORR catalysts on a large scale owing to the low‐cost MPH‐X precursors with diverse metal types.  相似文献   

6.
Nitrogen‐doped carbon nanosheets (NDCN) with size‐defined mesopores are reported as highly efficient metal‐free catalyst for the oxygen reduction reaction (ORR). A uniform and tunable mesoporous structure of NDCN is prepared using a templating approach. Such controlled mesoporous structure in the NDCN exerts an essential influence on the electrocatalytic performance in both alkaline and acidic media for the ORR. The NDCN catalyst with a pore diameter of 22 nm exhibits a more positive ORR onset potential than that of Pt/C (?0.01 V vs. ?0.02 V) and a high diffusion‐limited current approaching that of Pt/C (5.45 vs. 5.78 mA cm?2) in alkaline medium. Moreover, the catalyst shows pronounced electrocatalytic activity and long‐term stability towards the ORR under acidic conditions. The unique planar mesoporous shells of the NDCN provide exposed highly electroactive and stable catalytic sites, which boost the electrocatalytic activity of metal‐free NDCN catalyst.  相似文献   

7.
金属空气电池阴极氧还原催化剂研究进展   总被引:4,自引:0,他引:4  
王瀛  张丽敏  胡天军 《化学学报》2015,73(4):316-325
随着能源危机加剧和生态环境恶化, 可持续发展能源受到更大的重视. 金属空气电池作为一种绿色能源是具有很大发展潜力的新一代电池. 与传统电池相比, 此类电池有着更高的理论能量密度, 尤其是锂空电池, 能量密度可达3505 Wh/kg, 然而阴极缓慢的氧还原反应成为制约其发展的关键因素之一. 在简要介绍氧还原反应机理基础上, 着重介绍了近年来氧还原催化剂如贵金属及其合金、过渡金属氧化物/硫化物、功能化碳材料和金属氮化物的研究进展, 并根据目前所存在问题指出未来研究方向, 包括深入研究氧还原反应机理, 明确催化剂活性位; 研究催化剂结构等对催化活性的影响, 优化制备条件, 以提高催化活性和稳定性; 根据氧还原机理设计开发新型氧还原催化剂.  相似文献   

8.
9.
罗瑾  杨乐夫  陈秉辉  钟传建 《电化学》2012,18(6):496-507
质子交换膜燃料电池作为重要的电化学能源转换装置,在提高能量转换效率、减少环境污染等方面具有诱人的前景.然而,阴极氧还原过电位较大、活性较低、稳定性差,且铂基催化剂昂贵,使该燃料电池难以商业化.纳米结构电催化剂的发展有望解决此难题。对纳米合金电催化剂其组分和结构的设计是开发高活性、高稳定性和低成本的燃料电池电催化剂的重要因素.本文综述了近期由分子设计和热化学控制处理法制备的三元纳米合金电催化剂对燃料电池氧还原反应催化性能的最新进展.该方法可控制纳米合金的尺寸、组成以及二元和三元纳米催化剂的合金化程度.以高活性的三元纳米合金催化剂PtNiCo/C为例,综述了在设计燃料电池电催化剂时结构和组成的纳米级调优的重要性.PtNiCo/C电催化剂的质量比活性远高于其二元合金催化剂和Pt/C商业电催化剂.三元电催化剂的催化活性可通过控制其组成来调节.文章还讨论了三元纳米合金催化剂的结构及其协同效应对增强其电催化性能的影响.  相似文献   

10.
An electrocatalyst with high oxygen reduction reaction (ORR) activity and high stability during start–stop operation is necessary. In this paper, hollow-structure Pt-Ni electrocatalysts are investigated as ORR catalysts. After synthesis via sacrificial SiO2 template method, the electrocatalyst exhibits much higher specific activity (1.88 mA/cm2) than a commercial Pt/C catalyst. The mass activity (0.49 A/mg) is 7 times higher than the commercial Pt/C catalyst. The kinetics of the ORR is evaluated using Tafel and K-L plots. It also exhibits a higher durability than commercial Pt/C catalyst during accelerated durability test (ADT). Moreover, the electrocatalyst shows good resistance against accelerated durability test for start–stop, the specific activity and mass activity drops 34.6% and 40.8%, respectively, far better than the commercial catalyst.  相似文献   

11.
To promote the oxygen reduction reaction of metal‐free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half‐cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping‐site position in the structure has not been investigated. Here, we report the synthesis of highly active metal‐free catalysts in MEAs by controlling pore size and doping‐site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass‐transport properties. Finally, an N,P‐codoped ordered mesoporous carbon with a large pore size and precisely controlled doping‐site position showed a remarkable on‐set potential and produced 70 % of the maximum power density obtained using Pt/C.  相似文献   

12.
《Electroanalysis》2018,30(3):436-444
Electrocatalysts perform a key role in increasing efficiency of the oxygen reduction reaction (ORR) and as a result, efforts have been made by the scientific community to develop novel and cheap materials that have the capability to exhibit low ORR overpotentials and allow the reaction to occur via a 4 electron pathway, thereby mimicking as close as possible to traditionally utilised platinum. In that context, two different types of carbon nanodots (CNDs) with amide (CND‐CONH2) and carboxylic (CND‐COOH) surface groups, have herein been fabricated and shown to exhibit excellent electrocatalytic activity towards the ORR in acid and basic media (0.1 M H2SO4 and 0.1 M KOH). CND surface modified carbon screen‐printed electrodes allow for a facile electrode modification and enabling the study of the CNDs electrocatalytic activity towards the ORR. CND‐COOH modified SPEs are found to exhibit improved ORR peak current and reduced overpotential by 21.9 % and 26.3 %, respectively compared to bare/unmodified SPEs. Additionally, 424 μg cm−2 CND‐COOH modified SPEs in oxygenated 0.1 M KOH are found to facilitate the ORR via a near optimal 4 (3.8) electron ORR pathway. The CNDs also exhibited excellent long‐term stability and tolerance with no degradation being observed in the achievable current with the ORR current returning to the baseline level within 100 seconds of exposure to a 1.5 M solution of methanol. In summary, the CND‐COOH could be utilised as a cathodic electrode for PEMFCs offering greater stability than a commercial Pt electrode.  相似文献   

13.
Single‐atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single‐atom electrode greatly limit their performance. Herein, we prepared a nickel single‐atom electrode consisting of isolated, high‐density and low‐valent nickel(I) sites anchored on a self‐standing N‐doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon‐fiber paper. The combination of single‐atom nickel(I) sites and self‐standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d‐band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single‐nickel‐atom electrode exhibits a specific current density of ?32.87 mA cm?2 and turnover frequency of 1962 h?1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

14.
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.  相似文献   

15.
燃料电池中广泛使用的铂基催化剂价格昂贵、储量低、容易失活,因此亟待开发廉价、高效非铂催化剂. 过渡金属(Fe、Co、Ni等)/杂原子共掺杂催化剂、杂原子掺杂(N、P、S、F等)碳材料以及碳材料包覆过渡金属复合物是目前发现的几类性能优异的非贵金属氧还原催化剂. 其中碳材料包覆过渡金属催化剂作为一类新型的高性能催化剂,对其研究还有待深入. 本文主要阐述了国内外在包覆型非贵金属氧还原催化剂方面的研究进展,从合成,性能,机理等方面对该类催化剂进行了总结,力求助益于该类催化剂的发展.  相似文献   

16.
Single‐atom catalysts have drawn great attention, especially in electrocatalysis. However, most of previous works focus on the enhanced catalytic properties via improving metal loading. Engineering morphologies of catalysts to facilitate mass transport through catalyst layers, thus increasing the utilization of each active site, is regarded as an appealing way for enhanced performance. Herein, we design an overhang‐eave structure decorated with isolated single‐atom iron sites via a silica‐mediated MOF‐templated approach for oxygen reduction reaction (ORR) catalysis. This catalyst demonstrates superior ORR performance in both alkaline and acidic electrolytes, comparable to the state‐of‐the‐art Pt/C catalyst and superior to most precious‐metal‐free catalysts reported to date. This activity originates from its edge‐rich structure, having more three‐phase boundaries with enhanced mass transport of reactants to accessible single‐atom iron sites (increasing the utilization of active sites), which verifies the practicability of such a synthetic approach.  相似文献   

17.
Recently, theoretical calculations have played an irreplaceable role in the discovery of electrocatalysts as a relatively time-efficient, cost-effective, and predictable method. More importantly, theoretical calculations can help screen out the best active reaction sites and modulate them accordingly, which is beneficial for the development of efficient catalysts. In this concept, we focus on the important role of theoretical calculations in determining catalytic active sites and understanding reaction mechanisms, emphasizing its importance in assisting the design and synthesis of efficient oxygen reduction reaction catalysts. Finally, we provide an outlook on the challenges and future development trend in this field.  相似文献   

18.
通过溶剂分散热处理方法制备了一种吡咯和对甲苯磺酸(TsOH)共同修饰的碳载非贵金属复合催化剂(Fe-N/C-TsOH),并采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对催化剂的形貌和组成成分进行表征. 借助循环伏安法(CV)和旋转圆盘技术研究了TsOH对催化剂在0.1 mol·L-1 KOH介质中催化氧还原性能的影响. 结果表明:TsOH的存在对催化剂催化氧还原反应(ORR)的活性影响很大. 以其制备的气体扩散电极在碱性电解质溶液中催化氧还原过程时转移的电子数为3.899,远比不含TsOH修饰的催化剂催化氧还原的电子数(3.098)高. 此外,研究发现600 ℃热处理过的Fe-N/C-TsOH催化剂表现出最佳的氧还原催化性能. 相比未经热处理过的Fe-N/C-TsOH催化剂,起峰电位和-1.5 mA·cm-2电流密度对应的电压分别向正方向移动30 和170 mV. XPS研究结果表明吡咯氮是催化剂主要活性中心,提供氧还原活性位,而TsOH加入形成的C―Sn―C和―SOn―有利于催化剂催化氧还原活性的提高,从而使该催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

19.
Herein, we developed FeOOH/Co/FeOOH hybrid nanotube arrays (HNTAs) supported on Ni foams for oxygen evolution reaction (OER). The inner Co metal cores serve as highly conductive layers to provide reliable electronic transmission, and can overcome the poor electrical conductivity of FeOOH efficiently. DFT calculations demonstrate the strong electronic interactions between Co and FeOOH in the FeOOH/Co/FeOOH HNTAs, and the hybrid structure can lower the energy barriers of intermediates and thus promote the catalytic reactions. The FeOOH/Co/FeOOH HNTAs exhibit high electrocatalytic performance for OER, such as low onset potential, small Tafel slope, and excellent long‐term durability, and they are promising electrocatalysts for OER in alkaline solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号