首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Throughout life the subventricular zone (SVZ) is a source of new olfactory bulb (OB) interneurons. From the SVZ, neuroblasts migrate tangentially through the rostral migratory stream (RMS), a restricted route approximately 5 mm long in mice, reaching the OB within 10–14 days. Within the OB, neuroblasts migrate radially to the granule and glomerular layers where they differentiate into granule and periglomerular (PG) cells and integrate into existing synaptic circuits. SVZ neurogenesis decreases with age, and might be a factor in age-related olfactory deficits. However, the effect of aging on the RMS and on the differentiation of interneuron subpopulations remains poorly understood. Here, we examine RMS cytoarchitecture, neuroblast proliferation and clearance from the RMS, and PG cell subpopulations at 6, 12, 18, and 23 months of age. We find that aging affects the area occupied by newly generated cells within the RMS and regional proliferation, and the clearance of neuroblasts from the RMS and PG cell subpopulations and distribution remain stable.  相似文献   

2.
In vitro studies support the existence of adult neural stem cells in the rostral migratory stream (RMS). The evidence supporting this possibility in vivo is scarce. We then explore this issue by taking advantage of a rat model in which a physical barrier implanted in the brain interrupted the migration of neuroblasts derived from the SVZ along the RMS at the level of its vertical limb. The presence of local stem cells and neurogenesis were then established by estimating the number of nuclei labeled with bromo-deoxyuridine (BrdU), the number of doublecortin-positive neuroblasts and the existence of cells displaying co-localization of BrdU and Sox-2 immunoreactivity along the RMS, at different time points following barrier implantation. Estimations of the number of the granular and periglomerular neurons integrated into the corresponding layers of the olfactory bulb of implanted rats established that stem cells in the RMS give rise predominantly to periglomerular neurons. Our results then support the notion that the RMS is indeed a region in which neurogenesis is taking place in the adult brain. They also support that the relative location of the neurogenic niche might imprint, at least in some degree, the identity and lineage of the neuroblasts arising from them.  相似文献   

3.
Continuous proliferation occurs in the adult subventricular zone (SVZ) of the lateral ventricles throughout life. In the SVZ, progenitor cells differentiate into neuroblasts, which migrate tangentially along the rostral migratory stream (RMS) to reach their final destination in the olfactory bulb. These progenitor cells mature and integrate into the existing neural network of the olfactory bulb. Long distance migration of neuroblasts in the RMS requires a highly dynamic cytoskeleton with the ability to respond to surrounding stimuli. Radixin is a member of the ERM (Ezrin, Radixin, Moesin) family, which connect the actin cytoskeleton to the extracellular matrix through transmembrane proteins. The membrane-cytoskeleton linker proteins of the ERM family may regulate cellular events with a high demand on cytoskeleton plasticity, such as cell motility. Recently, specific expression of the ERM protein ezrin was shown in the RMS. Radixin however has not been characterized in this region. Here we used immunohistochemistry and confocal microscopy to examine the expression of radixin in the different cell types of the adult subventricular zone niche and in the RMS. Our findings indicate that radixin is strongly expressed in neuroblasts of the adult RMS and subventricular zone, and also in Olig2-positive cells. We also demonstrate the presence of radixin in the cerebral cortex, striatum, cerebellum, thalamus, hippocampus as well as the granular and periglomerular layers of the olfactory bulb. Our studies also reveal the localization of radixin in neurosphere culture studies and we reveal the specificity of our labeling using Western blotting. The expression pattern demonstrated here suggests a role for radixin in neuronal migration and differentiation in the adult RMS. Understanding how adult neuronal migration is regulated is of importance for the development of new therapeutic interventions using endogenous repair for neurodegenerative diseases.  相似文献   

4.
Adult neurogenesis and the olfactory system   总被引:1,自引:0,他引:1  
Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions.  相似文献   

5.
The adult subventricular zone (SVZ) supports neural stem cell self-renewal and differentiation and continually gives rise to new neurons throughout adult life. The mechanisms orienting the migration of neuroblasts from the SVZ to the olfactory bulb (OB) via the rostral migratory stream (RMS) have been extensively studied, but factors controlling neuroblast exit from the SVZ remain poorly explored. The morphogen Sonic Hedgehog (Shh) displays proliferative and survival activities toward neural stem cells and is an axonal chemoattractant implicated in guidance of commissural axons during development. We identify here the presence of Shh protein in SVZ extracts and in the cerebrospinal fluid of adult mice, and we demonstrate that migrating neuroblasts in the SVZ and RMS express the Shh receptor Patched. We show that Shh displays a chemoattractive activity in vitro on SVZ-derived neuronal progenitors, an effect blocked by Cur61414, a Smoothened antagonist. Interestingly, Shh-expressing cells grafted above the RMS of adult mice exert a chemoattractive activity on migrating neuroblasts in vivo, thus inducing their accumulation and deviation from their normal migratory pathway. Furthermore, the adenoviral transfer of Shh into the lateral ventricle or the blocking of Shh present in the SVZ of adult mice using its physiological antagonist Hedgehog interacting protein or neutralizing Shh antibodies provides in vivo evidence that Shh can retain SVZ-derived neuroblasts. The ability to modulate the number of neuroblasts leaving the SVZ and reaching the OB through the chemoattractive activity of Shh suggests a novel degree of plasticity in cell migration of this adult stem cell niche.  相似文献   

6.
In adult mammals, new neurons in the subventricular zone (SVZ) of the lateral ventricle (LV) migrate tangentially through the rostral migratory stream (RMS) to the olfactory bulb (OB), where they mature into local interneurons. Using a monoclonal antibody for the beta-amyloid precursor protein (APP) (mAb 22C11), which is specific for the amino-terminal region of the secreted form of APP and recognizes all APP isoforms and APP-related proteins, immunoreactivity was detected in specific subpopulations of cells in the SVZ and RMS of the adult rat forebrain. In the SVZ, APP-like immunoreactivity was detected in the ependymal cells lining the LV and some of the subependymal cells. The latter were regarded as astrocytes, because they were positive for the glial markers, S-100 protein (S-100) and glial fibrillary acidic protein (GFAP). APP-like immunoreactive astrocytes exhibited strong labelling of the perinuclear cytoplasm and often possessed a long, fine process similar to that found with radial glia. The process extended to an APP-like immunoreactive meshwork in the RMS that consisted of cytoplasmic processes of astrocytes forming 'glial tubes'. Double-immunofluorescent labelling with a highly polysialylated neural cell adhesion molecule (PSA-NCAM) confirmed that the APP-like immunoreactive astrocytes in the SVZ and meshwork in the RMS made close contact with PSA-NCAM-immunopositive neuroblasts, suggesting an interaction between APP-containing cells and neuroblasts. This region of the adult brain is a useful in vivo model to investigate the role of APP in neurogenesis.  相似文献   

7.
The subventricular zone (SVZ) is a neurogenic region that continually gives rise to olfactory bulb (OB) GABAergic interneurons in mammals. The newly generated neuroblasts already express GABA while migrating to this structure along the rostral migratory stream (RMS). Here, we investigate in early postnatal rat if SVZ/RMS cells undertake the same synthetic pathway by which GABA is produced in differentiated neurons, i.e. the decarboxylation of glutamate by the glutamic acid decarboxylase (GAD), or, if an alternative pathway, the conversion of putrescine into GABA, also contributes to GABA synthesis. We show here that GAD immunoreactivity is not significantly detectable within the SVZ/RMS. However, strong immunolabeling is found within the OB. Nevertheless, low GAD enzymatic activity (as compared with OB) is detected in the SVZ/RMS. SVZ/RMS explants convert approximately 30% of all captured radiolabeled putrescine into GABA in vitro, showing that this pathway is important for GABA synthesis in the SVZ. We also show that SVZ/RMS, OB and choroid plexus explants are able to synthesize putrescine, as analyzed by ornithine decarboxylase (ODC) activity, providing neuroblasts with different sources of putrescine for GABA production. During early stages of neuroblast differentiation, in which neurotransmitter choice may still be undefined, an alternative pathway for GABA synthesis guarantees the production of GABA, necessary for neuroblast proliferation and migration in the SVZ/RMS.  相似文献   

8.
The rostral migratory stream (RMS) is the major pathway by which progenitor cells migrate from the subventricular zone (SVZ) to the olfactory bulb (OB) in rodents, rabbits and primates. However, the existence of an RMS within the adult human brain has been elusive. Immunohistochemical studies utilising cell-type specific markers for early progenitor cells (CD133), proliferating cells (PCNA), astrocytes and type B cells (GFAP) and migrating neuroblasts (PSA-NCAM), reveal that the adult human RMS is organized into layers containing glial cells, proliferating cells and neuroblasts. In addition, the RMS is arranged around a remnant of the ventricular cavity that extends from the SVZ to the OB as seen by immunohistological staining analysis and electron microscopy, showing the presence of basal bodies and a typical 9 + 2 arrangement of tubulin in tufts of cilia from all levels of the RMS. Overall, these findings suggest that a pathway of migratory progenitor cells similar to that seen in other mammals is present within the adult human brain and that this pathway could provide for neurogenesis in the human forebrain. These findings contribute to the scientific understanding of adult neurogenesis and establish the detailed cytoarchitecture of this novel neurogenic niche in the human brain.  相似文献   

9.
Reelin调节小鼠喙端迁移流发育的形态学观察   总被引:1,自引:1,他引:0  
目的 探讨小鼠室管膜下区(SVZ)的神经干细胞孵育成熟以及沿喙端迁移流(RMS)切线迁移至嗅球(OB)的过程,尤其是Reelin对细胞迁移和细胞分化的影响。方法 选用野生型(WT)小鼠50只和纯合reeler小鼠23只胚胎16 d至生后90 d的各年龄点小鼠大脑,应用尼氏染色、免疫荧光染色、墨汁灌注及电子显微镜技术标记并观察小鼠大脑的神经干细胞、胶质细胞以及血管发生之间的相互关系,比较两组小鼠RMS的发育情况。结果 胚胎后期至出生早期,在SVZ分布着大量的胶质细胞、神经干细胞和血管网,它们相互联系构成SVZ神经干细胞孵育的血管龛(niche);神经干细胞在niche中孵育成熟后可以进入RMS,切线迁移至嗅球,到达嗅球后转变为放射状迁移,分化为各种神经元整合入嗅球;神经干细胞在RMS的迁移过程中,放射状胶质细胞协同血管为其提供支架引导;reeler小鼠也能形成RMS,但形态有所改变,主要在嗅球处,神经干细胞失去规律排列,呈散乱分布。结论 室管膜下区的niche是神经干细胞的主要来源;血管协同放射状胶质细胞为RMS中的神经干细胞提供支架引导作用;作为调节细胞迁移的重要信号,Reelin可以通过其交互作用影响血管的发育,Reelin缺失导致嗅球处神经干细胞放射状迁移的转变障碍。  相似文献   

10.
Development of the olfactory bulb (OB) is a complex process that requires contributions from several progenitor cell niches to generate neuronal diversity. Previous studies showed that Tbr2 is expressed during the generation of glutamatergic OB neurons in rodents. However, relatively little is known about the role of Tbr2 in the developing OB or in the subventricular zone‐rostral migratory stream (SVZ‐RMS) germinal niche that gives rise to many OB neurons. Results: Here, we use conditional gene ablation strategies to knockout Tbr2 during embryonic mouse olfactory bulb morphogenesis, as well as during perinatal and adult neurogenesis from the SVZ‐RMS niche, and describe the resulting phenotypes. We find that Tbr2 is important for the generation of mitral cells in the OB, and that the olfactory bulbs themselves are hypoplastic and disorganized in Tbr2 mutant mice. Furthermore, we show that the SVZ‐RMS niche is expanded and disordered following loss of Tbr2, which leads to ectopic accumulation of neuroblasts in the RMS. Lastly, we show that adult glutamatergic neurogenesis from the SVZ is impaired by loss of Tbr2. Conclusions: Tbr2 is essential for proper morphogenesis of the OB and SVZ‐RMS, and is important for the generation of multiple lineages of glutamatergic olfactory bulb neurons. Developmental Dynamics 243:440–450, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The olfactory bulb is one of a few brain structures characterized by high plasticity due to the fact that new neurons are continually integrated into the olfactory bulb circuit throughout life. The new cells originate from the subventricular zone of the forebrain and migrate through the rostral migratory stream (RMS) to the olfactory bulb that also represents the first synaptic relay of the olfactory system. Data accumulating in recent years have confirmed that sensory inputs can influence the level of postnatal neurogenesis in the olfactory bulb. In this study, we studied neurogenesis in the rostral migratory stream of Wistar albino rat pups after exposure to an odor-enriched environment. The rats were olfactory stimulated twice daily with different odorants from the day of their birth up to 1, 2 or 3 weeks, respectively. Using bromodeoxyuridine, a marker of cell proliferation, we found an increased number of proliferating cells in the rostral migratory stream of rat pups submitted to olfactory stimulation. Conversely, the number of dying cells, labeled with the fluorescent dye Fluoro Jade-C, was down-regulated in groups of rats exposed to an odor-enriched environment.  相似文献   

12.
The subventricular zone (SVZ) of the lateral ventricles, the largest remaining germinal zone of the adult mammalian brain, contains an extensive network of neuroblasts migrating rostrally to the olfactory bulb. Little is known about the endogenous proliferation signals for SVZ neural stem cells or guidance cues along the migration pathway. Here we show that the receptor tyrosine kinases EphB1-3 and EphA4 and their transmembrane ligands, ephrins-B2/3, are expressed by cells of the SVZ. Electron microscopy revealed ephrin-B ligands associated with SVZ astrocytes, which function as stem cells in this germinal zone. A three-day infusion of the ectodomain of either EphB2 or ephrin-B2 into the lateral ventricle disrupted migration of neuroblasts and increased cell proliferation. These results suggest that Eph/ephrin signaling is involved in the migration of neuroblasts in the adult SVZ and in either direct or indirect regulation of cell proliferation.  相似文献   

13.
Ezrin is a member of the ERM (ezrin-radixin-moesin) family of membrane-cytoskeletal linking proteins. ERM proteins are involved in a wide variety of cellular functions including cell motility, signal transduction, cell-cell interaction and cell-matrix recognition. A recent in situ hybridization study showed that the mRNA encoding ezrin is expressed in neurogenic regions of the mature brain including the subventricular zone (SVZ) and rostral migratory stream (RMS); however, the specific cell types expressing ezrin and their relationship to migrating and proliferating cells in these regions have not been characterized previously. In this study, we used immunocytochemistry to perform double labeling with a variety of cell-type specific markers to characterize the expression of ezrin in the SVZ and RMS of adult mice. Ezrin was expressed at high levels in both the SVZ and RMS where ezrin-immunopositive processes formed a trabecular network surrounding the proliferating and migrating cells. Ezrin-positive cells co-labeled with the glial makers S100beta and GFAP (glial fibrillary acidic protein), but only minimally with the early neuronal markers beta III tubulin and polysialylated form of neural cell adhesion molecule 1 (PSA-NCAM), indicating that ezrin was expressed primarily in the glial tube cells. Ezrin positive cells also expressed beta-catenin, a membrane-complex protein previously implicated in the regulation of stem-cell proliferation and neuronal migration. Glial tube cells act as both precursors of, and a physical channel for, migrating neuroblasts. Bi-directional signals between glial tube cells and migrating neuroblasts have been shown to regulate the rates of both proliferation of the precursor cells and migration of the newly generated neuroblasts. Our finding that ezrin and beta-catenin are both present at the cell membrane of the glial tube cells suggests that these proteins may be involved in those signaling processes.  相似文献   

14.
Soares S  Sotelo C 《Neuroscience》2004,128(4):807-817
The subventricular zone (SVZ) in the forebrain is the largest source of neural stem cells and progenitor cells in the adult CNS. To assess the ability of adult neural stem cells to survive, differentiate and migrate, we have compared the behavior of dissociated, neurosphere-derived stem cells with that of progenitor cells in transplantation experiments. This ability was first tested in vivo, offering the stem cells the possibility to migrate along the rostral migratory stream (RMS), their specific pathway. In addition, the differential behaviors of the two classes of cells were also compared in vitro by grafting them into organotypic slice cultures containing either tangential (embryonic cerebral cortex) or radial (early postnatal cerebellar cortex) migratory routes. Most of the grafted adult neurosphere-derived stem cells survived and integrated in vivo, and a proportion of them differentiate into neurons, oligodendrocytes or astrocytes. However, they were unable to migrate along the RMS and remained in the vicinity of the injection site. In contrast, SVZ progenitor cells were able to migrate toward the olfactory bulb and, once there, to acquire the phenotype of granule cells, as previously reported. In vitro, neural stem cells exhibited a better migratory ability, although they only migrated for short distances, particularly, in forebrain slices. Nevertheless, the average distance covered by progenitor cells was a two-fold longer than that covered by neural stem cells, corroborating that this class of more specified cells has higher migratory ability. These results suggest that the in vitro conditions of expanding SVZ-derived stem cells, required to maintain them in an immature stage might modify their intrinsic properties, preventing their differentiation into neuroblasts and their subsequent migration.  相似文献   

15.
The presence of ongoing neurogenesis in the adult mammalian brain raises the exciting possibility that endogenous progenitor cells may be able to generate new neurons to replace cells lost through brain injury or neurodegenerative disease. We have recently demonstrated increased cell proliferation and the generation of new neurons in the Huntington's disease human brain. In order to better understand the potential role of endogenous neuronal replacement in neurodegenerative disorders and extend our initial observations in the human Huntington's disease brain, we examined the effect of striatal cell loss on neurogenesis in the subventricular zone (SVZ) of the adult rodent forebrain using the quinolinic acid (QA) lesion rat model of Huntington's disease. Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunocytochemistry for cell type-specific markers. BrdU labeling demonstrated increased cell proliferation in the SVZ ipsilateral to the QA-lesioned striatum, resulting in expansion of the SVZ in the lesioned hemisphere. Quantification revealed that QA lesion-induced striatal cell loss produced a significant increase in the area of BrdU-immunoreactivity in the SVZ ipsilateral to the lesioned hemisphere between 1 and 14 days post-lesion compared with sham-lesioned animals, with the greatest increase observed at 7 days post-lesion. These changes were associated with an increase in cells in the anterior SVZ ipsilateral to the lesioned striatum expressing the antigenic marker for SVZ neuroblasts, doublecortin (Dcx). Importantly, we observed Dcx-positive cells extending from the SVZ into the QA-lesioned striatum where a subpopulation of newly generated cells expressed markers for immature and mature neurons. This study demonstrates that loss of GABAergic medium spiny projection neurons following QA striatal lesioning of the adult rat brain increases SVZ neurogenesis, leading to the putative migration of neuroblasts to damaged areas of the striatum and the formation of new neurons.  相似文献   

16.
New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB  相似文献   

17.
The subventricular zone (SVZ) is the largest germinal zone in the mature rodent brain, and it continuously produces young neurons that migrate to the olfactory bulb. Neural stem cells in this region generate migratory neuroblasts via highly proliferative transit-amplifying cells. The Wnt/beta-catenin signaling pathway partially regulates the proliferation and neuronal differentiation of neural progenitor cells in the embryonic brain. Here, we studied the role of beta-catenin signaling in the adult mouse SVZ. beta-Catenin-dependent expression of a destabilized form of green fluorescent protein was detected in progenitor cells in the adult SVZ of Axin2-d2EGFP reporter mice. Retrovirus-mediated expression of a stabilized beta-catenin promoted the proliferation of Mash1+ cells and inhibited their differentiation into neuroblasts. Conversely, the expression of Dkk1, an inhibitor of Wnt signaling, reduced the proliferation of Mash1+ cells. In addition, an inhibitor of GSK3 beta promoted the proliferation of Mash1+ cells and increased the number of new neurons in the olfactory bulb 14 days later. These results suggest that beta-catenin signaling plays a role in the proliferation of progenitor cells in the SVZ of the adult mouse brain.  相似文献   

18.
目的 研究嗅球切除后成年大鼠侧脑室外侧壁(SVZ)新生细胞增殖和分化的情况,进一步探讨嗅球对SVZ神经生发活动的影响.方法 建立成年SD雄性大鼠右侧嗅球切除模型,并分别存活4周和12周,利用Nissl染色、多唾液酸神经细胞黏附分子(PSA-NCAM)和BrdU免疫组织化学染色的方法观察了成年SD大鼠嗅球切除后存活不同时间两侧吻侧迁移流(RMS)BrdU阳性细胞数占总细胞百分比的变化以及两侧RMS PSA-NCAM阳性细胞的形态学变化.结果 1.嗅球切除后不同时间点,嗅球切除侧RMS的细胞数增加,BrdU免疫阳性细胞数增加,但BrdU免疫阳性细胞数占总细胞数的百分比随嗅球切除后大鼠存活时间的延长而下降,且以RMS的吻侧部分下降更明显;2.嗅球切除后,在切除侧断端吻侧颗粒层和RMS均出现较对照侧更多的具有较长突起的PSA-NCAM阳性细胞.结论 嗅球切除后仍有新生神经元沿RMS向吻侧迁移,但其增殖率随时间延长下调;嗅球的切除似乎并没有影响成神经细胞的分化.  相似文献   

19.
目的 研究生后不同日龄小鼠喙端迁移流(RMS)的发育,神经干细胞增殖和凋亡的规律。方法 利用Caspase-8免疫荧光标记法和5’-溴脱氧尿嘧啶核苷(BrdU)法,对小鼠RMS内的神经干细胞增殖和凋亡进行研究(n =92)。结果 生后早期小鼠脑内,尤其是室管下区(SVZ)和RMS,存在大量的增殖细胞。随着小鼠年龄的增加,脑内干细胞逐渐减少,到成年,大脑皮质几乎见不到增殖的神经干细胞,但在SVZ和RMS仍可以看到许多增殖的神经干细胞。在RMS,神经干细胞增殖的同时伴随着细胞凋亡,干细胞的增殖与凋亡存在着正相关关系。结论 RMS的神经干细胞增殖与凋亡有重要的生理意义,通过细胞凋亡,RMS可以调节神经干细胞向嗅球迁移的数量,也可以调节干细胞向颗粒细胞分化。  相似文献   

20.
A number of studies have demonstrated directed migration of neural progenitor cells to sites of brain injury and disease, however a detailed examination of when a cell is "born" in relation to injury induction and the migratory response of that cell has not previously been determined. This study therefore examined the temporal correlation between progenitor cell proliferation ("birth") and neuroblast migratory response into the damaged striatum following quinolinic acid (QA) lesioning of the adult rat striatum. Retroviral labeling of subventricular zone (SVZ)-derived progenitor cells demonstrated that cell loss in the QA-lesioned striatum increased progenitor cell migration through the rostral migratory stream (RMS) for up to 30 days. In addition, a population of dividing cells originating from the SVZ generated doublecortin positive neuroblasts that migrated into the damaged striatum in response to cell loss invoked by the QA lesion. Quantification of bromodeoxyuridine (BrdU)-labeled cells co-expressing doublecortin revealed that the majority of cells present in the damaged striatum were generated from progenitor cells dividing within 2 days either prior to or following the QA lesion. In contrast, cells dividing 2 or more days following QA lesioning, migrated into the striatum and exhibited a glial phenotype. These results demonstrate that directed migration of SVZ-derived cells and neuroblast differentiation in response to QA lesioning of the striatum is acute and transient. We propose this is predominantly due to a reduced capacity over time for newly generated neuroblasts to respond to the lesioned environment due to a loss or inhibition of migratory cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号