首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
反应堆压力容器辐照监督   总被引:1,自引:1,他引:0  
介绍了秦山第二核电厂600 MW压水堆机组的辐照监督计划,对监督、试验、评价方法以及超前因子偏大的原因进行了分析讨论.根据辐照监督数据评价了秦山第二核电厂反应堆压力容器辐照脆化效应.  相似文献   

2.
反应堆压力容器老化敏感性分析方法   总被引:1,自引:0,他引:1  
杨宇 《核动力工程》2007,28(5):87-90
结合近期开展的大亚湾反应堆压力容器老化分析及大纲编写工作,归纳总结了反应堆压力容器老化敏感性分析方法,提出了较为明确的表单化的老化分析流程,可以为相关的老化分析与评价活动提供借鉴.  相似文献   

3.
田湾核电站反应堆压力容器承压热冲击分析   总被引:1,自引:1,他引:0  
反应堆压力容器(RPV)是核反应堆中不可替换的关键设备。田湾核电站在役前检查阶段,发现反应堆压力容器2#焊缝存在超标缺陷,2#焊缝处于堆芯筒体段,属强辐照区。为评价该缺陷的可接受性,采用有限元方法对反应堆压力容器2#焊缝进行了承压热冲击分析,在分析中考虑了小破口失水事故和安全阀误开启这两种最严酷工况。计算结果表明:有限元分析的结果与外国专家推荐方法的计算结果基本吻合,且田湾核电站反应堆压力容器2#焊缝寿期末的脆性转变温度小于最低容许脆性转变温度,能满足防脆断的设计要求。  相似文献   

4.
低铜合金反应堆压力容器钢辐照脆化预测评估模型   总被引:1,自引:1,他引:0  
反应堆压力容器(RPV)材料辐照脆化预测评估对保证核反应堆安全运行、预防重大灾难性事故的发生具有重要意义。通过深入了解RPV材料辐照损伤机理和分析国外较为成熟的RPV辐照脆化预测模型,揭示了国外有关压力容器辐照脆化预测模型对低铜RPV辐照脆化预测的不足及其原因。在此基础上,发展和建立了适用于低铜RPV辐照脆化趋势的预测模型CIAE-2009。利用辐照性能数据对CIAE-2009模型进行了验证。结果表明,CIAE-2009对低铜含量RPV材料辐照脆化趋势预测具有较高的准确性和可靠性。  相似文献   

5.
反应堆压力容器结构完整性是核电厂运行及延寿时需重点关注的问题之一。特别是承压热冲击(PTS)工况下反应堆压力容器结构完整性的验证工作对电厂能否安全运行有重要意义。为验证AP1000反应堆压力容器的结构完整性,本文简要阐述了AP1000反应堆压力容器进行确定性结构完整性分析的必要性,并对压力容器在典型PTS瞬态下的结构完整性进行了评价。分析评价采用概率断裂力学软件FAVOR中的FAVLoad模块进行,并应用IAEA-TECDOC-1627中的基准考题对该模块进行了验证,最后对AP1000反应堆压力容器进行了确定性结构完整性评价。评价结果表明,AP1000反应堆压力容器寿期末实际RTPTS值低于假想PTS瞬态对应的限值。反应堆压力容器在典型PTS瞬态下的结构完整性可以保证,同时也说明采用FAVLoad模块进行反应堆压力容器确定性结构完整性评价的方法可行。  相似文献   

6.
为确保核电站设备在整个寿期内设计安全裕度要求能够得到满足,必须对设备老化进行有效的管理。对影响反应堆压力容器(RPV)的老化机理进行了初步分析,并结合大亚湾核电站的实际情况对2号机组RPV的目前状态进行了分析评估:  相似文献   

7.
根据IAEA系统化老化管理的理念和USNRC以执照更新为核心的老化管理方法出发,论述了核电厂反应堆压力容器老化管理大纲开发中需要考虑的要素.从法规体系、设备老化管理的基本要求、主要老化机理分析、文件体系审查及两种老化管理模式的适用性等角度,全面叙述了反应堆压力容器老化管理大纲开发中涉及的内容.以典型核电厂反应堆压力容器为例,给出老化管理大纲的工程应用实例.  相似文献   

8.
基于大量相似辐照脆化试验测试数据和实际辐照监督测试数据,采用统计分析的方法,选出适合于某核电厂反应堆压力容器(RPV)的辐照脆化评估公式。以该核电厂已经完成的辐照监督管测试数据为输入,对RPV当前的辐照脆化状态进行了评估,并推算、分析了RPV在寿期末的结构完整性;基于辐照脆化计算结果,绘制了各运行阶段RPV的压力-温度限值曲线(P-T曲线),并给出运行建议。   相似文献   

9.
对反应堆压力容器用Ni-Cr-Mo-V钢焊缝温度监督样品的热老化脆化行为进行了研究。焊缝属于压力容器的薄弱环节,服役时间最高达120 430 h(服役温度归一化到300 ℃)。3批次的焊缝监督样品冲击实验表明,焊缝材料在热老化过程中发生了脆化。通过研究发现,金相组织和显微维氏硬度在热老化期间未发生明显的变化,表明在热老化过程中不存在硬化脆化机制。断口分析及扫描俄歇纳米探针研究表明,晶界发生了P的偏析,弱化了晶界结合力,因此,反应堆压力容器用Ni-Cr-Mo-V钢焊缝在热老化过程中发生了由杂质元素P偏析引起的非硬化脆化。  相似文献   

10.
压水堆核电厂反应堆压力容器辐照脆化评价与监督   总被引:1,自引:0,他引:1  
孙海涛 《核安全》2010,(3):17-21
反应堆压力容器是压水堆核电厂的核心关键设备,受快中子(E1MeV)辐照造成的辐照脆化是其运行失效的重要因素,因此需要对压力容器进行辐照评价与监督,以保证其寿期内的安全运行。  相似文献   

11.
The VVER-1000 coolant transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three-dimensional neutron kinetic core models. It concerns switching on a main coolant pump when the other three main coolant pumps are in operation. The problem is based on an experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, an extreme scenario concerning a control rod ejection after switching on a main coolant pump was calculated. At VTT the three-dimensional advanced nodal code HEXTRAN is used for the core dynamics, and the system code SMABRE as a thermal hydraulic model for the primary and secondary loop. The parallelly coupled HEXTRAN–SMABRE code has been in production use since early 1990s, and it has been extensively used for analyses of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used at VTT. The whole core calculation is performed with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation were specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Parametric studies have been performed for selected parameters.  相似文献   

12.
The change in neutronic parameters of the VVER-1000 nuclear reactor core attributable to the use of nanoparticle/water (nanofluid) as coolant is presented in this paper. Optimization of type and volume fraction of nanoparticles in water that affect the safety enhancement of core primary parameters is intended in this study. Reactivity change, radial and axial local peaking factors (LPPF), and the consequence of nanoparticle deposition on fuel clad are investigated.  相似文献   

13.
The main objective of this paper is to study the effects of various spacer grid models on the neutronic parameters of a VVER-1000 reactor. Specifically, the data of the nuclear power plant at the Bushehr site, which is of a VVER-1000 type, will be studied. Three models, representing the spacer grids along the fuel assemblies are presented. These three models are the homogeneous and the heterogeneous local spacer grid models and the shroud spacer grid model. In the homogeneous and the heterogeneous models, the spacer grids are considered at their actual locations in the axial direction. The only difference between the two models is that in the homogeneous model, the spacer grids are homogenized with the coolant while in the heterogeneous model, the spacer grids are modeled around the fuel cells at their exact axial positions. In the shroud model, the spacer grids are modeled in the shroud region containing the coolant and are not necessarily placed at their appropriate axial positions.  相似文献   

14.
The VVER-1000 Coolant Transient Benchmark consists of two phases and refers to experimental data from the Kozloduy Unit 6 Nuclear Power Plant in Bulgaria. The paper describes the modelling features and their impact on the results of the Exercise 1, Phase 1 of the Benchmark obtained by two ATHLET user groups, namely GRS and NRI. The simulated transient is a main coolant pump (MCP) switching on in one loop at reduced power while three other MCPs are in operation. Particular attention is paid to the influence of the reactor vessel modelling and especially of the nodalization in the upper plenum. The comparison and discussion of the two simulation results confirm that the two solutions with the ATHLET system code achieve quite good system response of the plant transient.  相似文献   

15.
张君南  周耀权  李璐  郑伟 《辐射防护》2021,41(Z1):15-19
田湾3、4号机组采用俄方设计制造的VVER-1000型反应堆,其正常运行气液态流出物排放源项是检验核电厂设计是否满足国家相关环境标准的重要指标,是辐射防护最优化设计的重要内容之一。以我国压水堆核电厂源项框架体系为基础,通过分析田湾核电站相关工艺系统流程,选取合适的工艺回路部件数学模型,采用电厂设计以及实际运行经验参数,分别计算了设计与现实排放源项,并与俄方计算结果进行对比,说明采用新源项框架体系下气液态放射性流出物的变化情况。  相似文献   

16.
Numerical solutions based on finite-difference method require the domain in the problem to be divided into a number of nodes in the form of triangles, rectangular, and so on. To apply the finite-difference method in reactor physics for solving the diffusion equation with satisfactory accuracy, the distance between adjacent mesh-points should be small in comparison with a neutron mean free path. In this regard the effect of number of mesh points on the accuracy and computation time have been investigated using the VVER-1000 reactor of Bushehr NPP as an example, and utilizing WIMS and CITATION codes. The best results obtained in this study belong to meshing models with higher numbers of mesh-points in both radial and axial directions of the reactor core.  相似文献   

17.
An accurate prediction of reactor core behavior in transients depends on how much it could be possible to exactly determine the thermal feedbacks of the core elements such as fuel, clad and coolant. In short time transients, results of these feedbacks directly affect the reactor power and determine the reactor response. Such transients are commonly happened during the start-up process which makes it necessary to carefully evaluate the detail of process. Hence this research evaluates a short time transient occurring during the start up of VVER-1000 reactor. The reactor power was tracked using the point kinetic equations from HZP state (100 W) to 612 kW. Final power (612 kW) was achieved by withdrawing control rods and resultant excess reactivity was set into dynamic equations to calculate the reactor power. Since reactivity is the most important part in the point kinetic equations, using a Lumped Parameter (LP) approximation, energy balance equations were solved in different zones of the core. After determining temperature and total reactivity related to feedbacks in each time step, the exact value of reactivity is obtained and is inserted into point kinetic equations. In reactor core each zone has a specific temperature and its corresponding thermal feedback. To decrease the effects of point kinetic approximations, these partial feedbacks in different zones are superposed to show an accurate model of reactor core dynamics. In this manner the reactor point kinetic can be extended to the whole reactor core which means “Reactor spatial kinetic”. All required group constants in calculations are prepared using the WIMS code. In addition CITATION code was used to calculate the flux, power distribution and core reactivity inside the core. To update the last change in group constants and resultant reactivity in point kinetic equations, these neutronic codes were coupled with a developed dynamic program. This study is applied on a typical VVER-1000 reactor core to show the reactor response in short time transients caused during start-up procedure.  相似文献   

18.
The PRORIA code and its recent modifications are described here. The PRORIA code analyzes the transient response of the core against the reactivity increase caused by the control rod rapid withdrawal. The code solves and analyzes neutronic and thermal–hydraulic equations simultaneously. The code is designed for western PWR-type reactor performance. The equations representing thermal–hydraulic and neutronic should be modified to use the code to analyze VVER-1000 reactor core transients, because The VVER-1000 reactor fuel has a central hole in the fuel pellet. In a cylindrical solid fuel pellet, operation of an oxide fuel material at high temperature alters its morphology and the inner region is restructured to form a void at the center surrounded by a dense fuel region. Most of the restructuring occurs within the first few days of operation with slow changes afterward. Hence, the effects of a central hole in mathematical equations and in the transient are investigated. After the code modification, three accident scenarios with control rod ejection are simulated. The results are in good agreement with those reported in the plant’s FSAR. The results show that the peak fuel temperature in the hot fuel pin is lower than what the original code predicts by 150–500 °C. Furthermore, the Doppler reactivity effect, when the fuel pellet has a central hole, is higher than the solid fuel pellet.  相似文献   

19.
In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled three-dimensional (3D) thermal-hydraulics/neutron kinetics benchmark for VVER-1000 was defined. The benchmark consists of calculation of a pump start-up experiment labelled V1000CT-1 (Phase 1), as well as a vessel mixing experiment and main steam line break (MSLB) transient labelled V1000CT-2 (Phase 2), respectively. The reference nuclear plant is Kozloduy-6 in Bulgaria. The overall objective is to assess computer codes used in the analysis of VVER-1000 reactivity transients. A specific objective is to assess the vessel mixing models used in system codes. Plant data are available for code validation consisting of one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). The validated codes can be used to calculate asymmetric MSLB transients involving similar mixing patterns. This paper summarizes a comparison of CATHARE and TRAC-PF1 system code results for V1000CT-1, Exercise 1, which is a full plant point kinetics simulation of a reactor coolant system (RCS) pump start-up experiment. The reference plant data include integral and sector average parameters. The comparison is made from the point of view of vessel mixing and full system simulation. CATHARE used a six-sector multiple 1D vessel thermal-hydraulic model with cross flows and TRAC used a six-sector, 18-channel coarse-mesh 3D vessel model. Good agreement in terms of integral parameters and inter-loop mixing is observed.  相似文献   

20.
In this paper, the Imperialist Competitive Algorithm was for the first time used for reloading pattern optimization of Bushehr's VVER-1000 reactor in the second cycle. Since the diversity of loadable fuels in the reactor core is at its highest level in the second cycle as compared to other operational cycles, it was decided to test optimization calculations in the most complicated state. To estimate the fuel compositions remained from the first cycle, and to precisely calculate the objective parameters of each of the arrangements examined in the optimization process, a program was designed based on the coupling of WIMS-D5B and CITATION-LDI2 codes in the neutronic section and the WERL code in the thermohydraulic part. The process of reloading pattern optimization was carried out in two states. In the first state, it was tried to obtain an arrangement with the maximum effective multiplication factor and the safe maximum power peaking factor. The objective of the second state was to obtain a reloading pattern with the flattest distribution of radial power peaking factor. In both of the optimization states, to ensure the optimality and safety of the proposed arrangements during the cycle, the behavior of thermo-neutronic parameters of the reactor core in the second cycle was studied through time-dependent calculations. The comparison between the results of this study and the arrangement proposed by the Russian contractor for a similar VVER-1000 reactor (Balakovo) revealed that the objective parameters of the arrangement proposed in this research provide more optimality. Finally, considering the innovative use of the imperialist competitive algorithm for optimizing reactor's reloading pattern and in view of the high speed of this algorithm, the present research can seemingly be a new step toward optimization of reloading patterns of nuclear reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号