首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase-promoting complex or cyclosome (APC/C) is an unusually large E3 ubiquitin ligase responsible for regulating defined cell cycle transitions. Information on how its 13 constituent proteins are assembled, and how they interact with co-activators, substrates and regulatory proteins is limited. Here, we describe a recombinant expression system that allows the reconstitution of holo APC/C and its sub-complexes that, when combined with electron microscopy, mass spectrometry and docking of crystallographic and homology-derived coordinates, provides a precise definition of the organization and structure of all essential APC/C subunits, resulting in a pseudo-atomic model for 70% of the APC/C. A lattice-like appearance of the APC/C is generated by multiple repeat motifs of most APC/C subunits. Three conserved tetratricopeptide repeat (TPR) subunits (Cdc16, Cdc23 and Cdc27) share related superhelical homo-dimeric architectures that assemble to generate a quasi-symmetrical structure. Our structure explains how this TPR sub-complex, together with additional scaffolding subunits (Apc1, Apc4 and Apc5), coordinate the juxtaposition of the catalytic and substrate recognition module (Apc2, Apc11 and Apc10 (also known as Doc1)), and TPR-phosphorylation sites, relative to co-activator, regulatory proteins and substrates.  相似文献   

2.
Chao WC  Kulkarni K  Zhang Z  Kong EH  Barford D 《Nature》2012,484(7393):208-213
In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.  相似文献   

3.
4.
Rape M  Kirschner MW 《Nature》2004,432(7017):588-595
Oscillations in cyclin-dependent kinase (CDK) activity drive the somatic cell cycle. After entry into mitosis, CDKs activate the anaphase-promoting complex (APC), which then promotes cyclin degradation and mitotic exit. The re-accumulation of cyclin A causes the inactivation of APC and entry into S phase, but how cyclin A can accumulate in the presence of active APC has remained unclear. Here we show that, during G1, APC autonomously switches to a state permissive for cyclin A accumulation. Crucial to this transition is the APC(Cdh1)-dependent autoubiquitination and proteasomal degradation of the ubiquitin-conjugating enzyme (E2) UbcH10. Because APC substrates inhibit the autoubiquitination of UbcH10, but not its E2 function, APC activity is maintained as long as G1 substrates are present. Thus, through UbcH10 degradation and cyclin A stabilization, APC autonomously downregulates its activity. This indicates that the core of the metazoan cell cycle could be described as a self-perpetuating but highly regulated oscillator composed of alternating CDK and APC activities.  相似文献   

5.
Sensorimotor coordination emerges early in development. The maturation period is characterized by the establishment of somatotopic cortical maps, the emergence of long-range cortical connections, heightened experience-dependent plasticity and spontaneous uncoordinated skeletal movement. How these various processes cooperate to allow the somatosensory system to form a three-dimensional representation of the body is not known. In the visual system, interactions between spontaneous network patterns and afferent activity have been suggested to be vital for normal development. Although several intrinsic cortical patterns of correlated neuronal activity have been described in developing somatosensory cortex in vitro, the in vivo patterns in the critical developmental period and the influence of physiological sensory inputs on these patterns remain unknown. We report here that in the intact somatosensory cortex of the newborn rat in vivo, spatially confined spindle bursts represent the first and only organized network pattern. The localized spindles are selectively triggered in a somatotopic manner by spontaneous muscle twitches, motor patterns analogous to human fetal movements. We suggest that the interaction between movement-triggered sensory feedback signals and self-organized spindle oscillations shapes the formation of cortical connections required for sensorimotor coordination.  相似文献   

6.
Wei W  Ayad NG  Wan Y  Zhang GJ  Kirschner MW  Kaelin WG 《Nature》2004,428(6979):194-198
Cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key cell-cycle regulators. SCF (Skp1/Cullin/F-box protein) complexes and anaphase-promoting complexes (APC) represent two major classes of ubiquitin ligases whose activities are thought to regulate primarily the G1/S and metaphase/anaphase cell-cycle transitions, respectively. The major target of the Skp1/Cul1/Skp2 (SCF(SKP2)) complex is thought to be the Cdk inhibitor p27 during S phase, whereas the principal targets for the APC are thought to be involved in chromatid separation (securin) and exit from mitosis (cyclin B). Although the role of the APC in mitosis is relatively clear, there is mounting evidence that APCs containing Cdh1 (APC(CDH1)) also have a function in the G1 phase of the cell cycle. Here, we show that the F-box protein Skp2 is polyubiquitinated, and hence earmarked for destruction, by APC(CDH1). As a result, accumulation of SCF(SKP2) requires prior inactivation of APC(CDH1). These findings provide an insight into the orchestration of SCF and APC activities during cell-cycle progression, and into the involvement of the APC in G1.  相似文献   

7.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

8.
9.
Li GC  Hahn GM  Tolmach LJ 《Nature》1977,267(5607):163-165
The lethal effect of ultrasound (US) on mammalian cells has received relatively little attention. Understandably, potential genetic aspects of US have been of prime concern to physicians who use US as a diagnostic tool; at the average power densities involved (<1 W cm(-2)) little, if any cell killing is to be expected. There have been sporadic attempts to use higher intensities ( approximately 1 W cm(-2)) as a treatment modality in cancer therapy, but those experiments seem to have been based on inadequate cellular studies. The effects of US usually were evaluated in terms of morphological criteria rather than on quantitative determination of the loss of viability as measured by colony formation. There are few reports of the effects of US on survival of mammalian cells, and none specifically examine hyperthermic interaction. With the increased interest in hyperthermia for tumour therapy, attention has been directed towards the use of ultrasound to achieve tumour heating. In preliminary experiments in which US was used to heat the EMT6 sarcoma and KHJJ carcinoma in mice, we found a high percentage of tumour cures with short (approximately 30 min) treatments at temperatures (43-44 degrees C) where in vitro results of hyperthermia-induced cell killing would not have led to a prediction of any cures. We therefore initiated an investigation of the effects of US on survival of Chinese hamster cells to see if direct cell killing by US could explain our in vivo results, or, as in the case of radiofrequency (RF) electromagnetic heating, we would be forced to invoke host response(8). In particular, we examined the thermal and non-thermal components of cellular inactivation by US. We report here that there is a definite non-thermal cytotoxic effect of US. Its relative contribution to cell killing is a highly nonlinear function of the temperature of the cellular milieu. The survival curves show clearly that, beyond an initial threshold, small changes in temperature and/or US intensity can give rise to impressive changes in survival values. The threshold nature of the data strongly suggests that by means of overlapping beams, ultrasound energy could be delivered to tumour tissue to achieve massive cell killings while sparing normal tissue outside the tumour volume to a degree far exceeding that of conventional techniques.  相似文献   

10.
One of the earliest marks of a double-strand break (DSB) in eukaryotes is serine phosphorylation of the histone variant H2AX at the carboxy-terminal SQE motif to create gammaH2AX-containing nucleosomes. Budding-yeast histone H2A is phosphorylated in a similar manner by the checkpoint kinases Tel1 and Mec1 (ref. 2; orthologous to mammalian ATM and ATR, respectively) over a 50-kilobase region surrounding the DSB. This modification is important for recruiting numerous DSB-recognition and repair factors to the break site, including DNA damage checkpoint proteins, chromatin remodellers and cohesins. Multiple mechanisms for eliminating gammaH2AX as DNA repair completes are possible, including removal by histone exchange followed potentially by degradation, or, alternatively, dephosphorylation. Here we describe a three-protein complex (HTP-C, for histone H2A phosphatase complex) containing the phosphatase Pph3 that regulates the phosphorylation status of gammaH2AX in vivo and efficiently dephosphorylates gammaH2AX in vitro. gammaH2AX is lost from chromatin surrounding a DSB independently of the HTP-C, indicating that the phosphatase targets gammaH2AX after its displacement from DNA. The dephosphorylation of gammaH2AX by the HTP-C is necessary for efficient recovery from the DNA damage checkpoint.  相似文献   

11.
Katou Y  Kanoh Y  Bando M  Noguchi H  Tanaka H  Ashikari T  Sugimoto K  Shirahige K 《Nature》2003,424(6952):1078-1083
The checkpoint regulatory mechanism has an important role in maintaining the integrity of the genome. This is particularly important in S phase of the cell cycle, when genomic DNA is most susceptible to various environmental hazards. When chemical agents damage DNA, activation of checkpoint signalling pathways results in a temporary cessation of DNA replication. A replication-pausing complex is believed to be created at the arrested forks to activate further checkpoint cascades, leading to repair of the damaged DNA. Thus, checkpoint factors are thought to act not only to arrest replication but also to maintain a stable replication complex at replication forks. However, the molecular mechanism coupling checkpoint regulation and replication arrest is unknown. Here we demonstrate that the checkpoint regulatory proteins Tof1 and Mrc1 interact directly with the DNA replication machinery in Saccharomyces cerevisiae. When hydroxyurea blocks chromosomal replication, this assembly forms a stable pausing structure that serves to anchor subsequent DNA repair events.  相似文献   

12.
E B Ong  G E Perlmann 《Nature》1967,215(5109):1492-1494
  相似文献   

13.
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.  相似文献   

14.
与Nimonic80A超合金排气阀相比,败类氏体不锈钢与Nimonica80A的双金属排气阀不但具有同样优异的热强度和热慢抗力,而且人格低廉,研究了双金属排气阀的电子束焊接方法,对焊缝和热影响区的组织结构,力学性能及可焊性进行了分析讨论。  相似文献   

15.
J Hyams 《Nature》1982,295(5851):648-649
  相似文献   

16.
Pheromone binding and inactivation by moth antennae   总被引:69,自引:0,他引:69  
Vogt RG  Riddiford LM 《Nature》1981,293(5828):161-163
The antennae of male silk moths are extremely sensitive to the female sex pheromone such that a male moth can find a female up to 4.5 km away. This remarkable sensitivity is due to both the morphological and biochemical design of these antennae. Along the branches of the plumose antennae are the sensilla trichodea, each consisting of a hollow cuticular hair containing two unbranched dendrites bathed in a fluid, the receptor lymph ,3. The dendrites and receptor lymph are isolated from the haemolymph by a barrier of epidermal cells which secreted the cuticular hair. Pheromone molecules are thought to diffuse down 100 A-wide pore tubules through the cuticular wall and across the receptor lymph space to receptors located in the dendritic membrane. To prevent the accumulation of residual stimulant and hence sensory adaptation, the pheromone molecules are subsequently inactivated in an apparent two-step process of rapid 'early inactivation' followed by much slower enzymatic degradation. The biochemistry involved in this sequence of events is largely unknown. We report here the identification of three proteins which interact with the pheromone of the wild silk moth Antheraea polyphemus: a pheromone-binding protein and a pheromone-degrading esterase, both uniquely located in the pheromone-sensitive sensilla; and a second esterase common to all cuticular tissues except the sensilla.  相似文献   

17.
Mitotic spindle organization by a plus-end-directed microtubule motor.   总被引:41,自引:0,他引:41  
K E Sawin  K LeGuellec  M Philippe  T J Mitchison 《Nature》1992,359(6395):540-543
Intracellular microtubule motor proteins may direct the motile properties and/or morphogenesis of the mitotic spindle (reviewed in ref. 3). The recent identification of kinesin-like proteins important for mitosis or meiosis indicates that kinesin-related proteins may play a universal role in eukaryotic cell division, but the precise function of such proteins in mitosis remains unknown. Here we use an in vitro assay for spindle assembly, derived from Xenopus egg extracts, to investigate the role of Eg5, a kinesin-like protein in Xenopus eggs. Eg5 is localized along spindle microtubules, and particularly enriched near spindle poles. Immunodepletion of Eg5 from egg extracts markedly reduces the extent of spindle formation in extracts, as does direct addition of anti-Eg5 antibodies. We also demonstrate that Eg5 is a plus-end-directed microtubule motor in vitro. Our results suggest a novel mechanism for the dynamic self-organization of spindle poles in mitosis.  相似文献   

18.
磁控溅射驱动方式是影响其等离子体特征的重要因素之一,而等离子体行为最终影响所沉积薄膜结构和性能。磁控溅射过程中基体上产生的浮动电势与等离子体中电子能量分布有关,基体饱和电流则与等离子体的离子密度有关,可综合反映辉光放电系统等离子体状态。本实验分别采用射频、直流和脉冲直流电源溅射Mo粉末靶,改变靶基距,测量基体浮动电势及饱和电流,探讨溅射驱动方式对等离子体行为的影响。研究表明:靶功率增加,靶电压、电流均随靶功率增大,基体浮动电势基本保持不变,基体饱和电流增加,但电压增加率极小,而电流增加率较大。基体浮动电势绝对值随靶基距的增加而降低,即电子的能量分布随靶基距增加而降低。射频溅射产生的浮动电势明显小于直流和脉冲直流溅射的。直流溅射等离子体能量最高,射频溅射等离子体密度最大。  相似文献   

19.
20.
G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A(2A) adenosine receptor (A(2A)AR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain. Here we report the raising of a mouse monoclonal antibody against human A(2A)AR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A(2A)AR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A(2A)AR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure and to CDR-3 of the nanobody in the active β(2)-adrenergic receptor structure, but locks A(2A)AR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号