首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳化钨涂层代替铬涂层   总被引:1,自引:0,他引:1  
70多年来,铬涂层一直是航空、运输业以及工业消费品中防磨损、抗冲击、耐腐蚀的“黄金标准”。然而,近年来,由于高硬度铬所带来的一些性能限制已表现得非常突出,因此军用和民用航空部门的工程学界和许多工业部门正在寻求更好的涂层材料、以及更加节约成本的涂层方法。  相似文献   

2.
为了探究激光熔覆对高速车轮钢合金涂层摩擦与磨损性能的影响,利用LDM2500-60型半导体全固态激光器在高速车轮钢表面激光熔覆制备Fe基合金涂层。分别采用金相显微镜、能量色散X射线光谱仪、X射线衍射仪(XRD)分析了熔覆涂层的组织结构、元素分布以及物相,利用MM-2000高速摩擦试验机研究了高速车轮材料激光熔覆处理前后轮轨材料的摩擦磨损性能。结果表明:激光熔覆处理能有效改善车轮材料的抗磨损性能,熔覆涂层主要由γ-Fe、Cr7C3碳化物以及含铁固溶体等物相组成,涂层组织主要以树枝晶和共晶为主;车轮合金涂层的磨损速率相比基体材料降低了51%左右,车轮熔覆铁基合金后的轮轨磨损机制主要表现为轻微的磨粒磨损和氧化磨损。  相似文献   

3.
磨损研究及其方向   总被引:3,自引:0,他引:3  
赵源  高万振  李健 《材料保护》2004,37(Z1):18-34
0引言 所有机器和机构的运转都是依赖其零件副的相对运动,有相对运动就有磨损,磨损导致表面损坏、零件失效和材料损耗,磨损是造成零件失效和材料损耗的主要原因.据统计分析表明,大约有80%的失效零件是由于各种形式的磨损引起的,因此,减少磨损的任何措施都会带来延长使用寿命和很大的节约,无疑开展磨损研究对于机器设备的质量和节约原材料具有重大意义.  相似文献   

4.
电弧喷涂Al,Zn涂层和Al-Zn伪合金涂层的磨损性能   总被引:1,自引:0,他引:1  
刘宪军 《材料保护》2001,34(3):10-11
采用电弧喷涂制备了Al涂层、Zn涂层和Al-Zn伪合金涂层,在Falex试验机上测试了3种涂层的磨损性能。利用扫措电镜(SEM)、X-射线衍射分析(XRD)、能谱分析(EDX)等手段,地试样磨痕形貌及悄进行了分析。结果表明:Al涂层的磨损主要为粘着磨损和磨粒磨损,Zn涂层的磨损主要为氧化磨损,Al-Zn伪合金涂层的磨损兼有Al,Zn2种涂层磨损特征,但更接近于Zn涂层的磨损机理。3种电弧喷涂层中,Zn涂层的耐磨性能优于其他2种涂层,Al-Zn伪合金涂层的耐磨性能介于两者之间,但更接近于Zn涂层。在140℃以下,温度对3种涂层的磨损性能影响不显著。  相似文献   

5.
郭策安  周峰  胡明  赵博远  金浩  张健 《材料导报》2018,32(18):3213-3216
为进一步提高火炮身管寿命,利用磁控溅射技术在CrNi3MoVA钢表面沉积了Ta涂层。沉积态Ta涂层由体心立方相α-Ta和亚稳态四方相β-Ta组成,在850℃下真空退火3h后其全部转化为单一的α-Ta相。利用纳米压痕仪和摩擦磨损试验机测试了α-Ta涂层的硬度、弹性模量及摩擦系数,结合扫描电镜(SEM)、能谱(EDS)及掠入射X射线衍射(GIXRD)分析了涂层的微观结构,并与传统电镀硬Cr涂层进行比较,研究了α-Ta涂层的摩擦磨损性能。结果表明:α-Ta涂层的摩擦系数(0.70~0.80)略小于硬Cr涂层的摩擦系数(0.75~0.85),α-Ta涂层的磨损机制主要为粘着磨损,而硬Cr涂层的磨损机制主要为疲劳磨损和粘着磨损。  相似文献   

6.
铝合金表面激光熔覆Cu基复合涂层的组织及磨擦磨损性能   总被引:2,自引:0,他引:2  
利用铜基熔体的液相分离作用,采用激光熔覆工艺,在ZL104合金表面成功获得了球形颗粒体增强的过饱和(Cu,Ni)固溶体基复合材料涂层。(Cu,Ni)固溶体的组织形态为胞状和树枝状,球形增强体内亚组织形态为颗粒状、穗状或树叶状。干滑动磨擦磨损试验表明复合材料熔覆层对ZL104合金表面耐磨性的提高作用很大。磨损过程中,ZL104合金主要发生了粘附磨损,出现了脱层现象;熔覆层材料发生了粘附磨损和磨粒磨损。  相似文献   

7.
在冶金、化工、航空航天及汽车等领域,高温腐蚀性环境中承受动载的关键零部件往往因为腐蚀-磨损的作用而失效,从而造成巨大的经济损失。当前,对于腐蚀-磨损的研究多集中于材料在腐蚀性气体、溶液或颗粒冲刷条件下的加速流失,而对材料在高温金属熔体中的熔蚀-磨损失效行为研究鲜有报道,对材料在高温金属熔体中腐蚀失效及摩擦磨损失效的交互作用尚不明确。铝及其合金产量居有色金属材料之首,被广泛应用于建筑、交通、能源、航空航天、电子等领域。然而铝熔体是腐蚀性最强的金属液之一,铝工业如冶金、成形及热浸镀等生产过程中的一些关键零部件往往因熔蚀-磨损而失效破坏。目前大量使用的仍是高合金的耐磨类材料如模具钢,材料价格昂贵、使用寿命很短,只能依靠频繁更换部件来维持生产。因此迫切需要开发耐铝液熔蚀-磨损新材料,满足铝工业生产应用的需求。然而,由于高温金属熔体这一腐蚀介质的特殊性,对材料高温熔蚀-磨损行为的研究鲜有报道。这一方面是由于缺乏专用的设备对材料的熔蚀-磨损行为进行测试表征,另一方面则是由于腐蚀界面存在复杂的冶金物理化学反应,而关于熔蚀和磨损行为的交互作用机理尚不明确。目前对于材料在铝液中熔蚀-磨损行为的研究较少,部分研究主要集中于铝合金液态成形过程中模具的冲蚀-磨损行为及材料替代,材料在铝液中的熔蚀-磨损机理研究则尚处于空白。近两年,在开发新型高温金属熔体腐蚀-磨损试验系统的基础上,学者实现了对材料在高温金属铝液中熔蚀-磨损行为的研究,并进行了大量的材料筛选。研究表明,常用的金属材料在铝液中的熔蚀-磨损行为主要受界面金属间化合物的生成速度、性质及其与基体界面的结合情况的影响。材料因熔蚀-磨损导致的流失远大于纯腐蚀与纯磨损导致的材料流失之和,说明材料在铝液中的熔蚀-磨损失效并不是腐蚀和磨损行为的简单叠加,其主要失效机理在于熔蚀和磨损的交互作用。对常用的H13钢材料而言,其在典型工况下的熔蚀-磨损交互作用率达90%以上。在材料开发方面,目前大多依靠单一的腐蚀试验以及高温摩擦磨损试验来收集数据,对耐铝液熔蚀-磨损材料的研究也主要集中在铁基合金组织调控、难熔金属应用以及表面处理技术这三个方面。近年来发展起来的金属间化合物基复合材料也为耐铝液熔蚀-磨损新材料的开发开辟了新的思路。本文简要介绍了材料在铝液中的熔蚀-磨损失效行为,指出熔蚀与磨损的交互作用是导致材料或零件失效的关键原因,在此基础上提出了对耐铝液熔蚀-磨损材料的性能要求。基于对国内外耐铝液熔蚀-磨损材料研究进展的综述,提出了耐铝液熔蚀-磨损材料未来的发展方向和研究重点。  相似文献   

8.
为了提高钻杆接头的耐磨损性能,选用由Ti、Cr、Al的氮化物、碳化物和氧化物所构成的金属陶瓷在钻杆接头材料(37CrMnMo)表面制备了多层陶瓷膜层。采用金相显微镜和扫描电子显微镜对金属陶瓷膜层的表面形貌及组织结构进行了分析。用MST3000摩擦磨损试验仪对钻杆接头材料进行旋转摩擦试验,得到表面陶瓷涂层摩擦系数的变化规律,结合摩擦副表面形貌观察和磨屑成分分析,分析了表面陶瓷涂层的耐磨性,探讨了表面陶瓷涂层的动态摩擦磨损机理。结果表明,在摩擦的初始阶段,表面陶瓷涂层摩擦系数急剧增加,随后稳定于某一定值,并在该值附近波动,波动范围逐渐增大。随着磨球被磨平,磨损形式由点面接触磨损,逐渐转换为面面接触磨损,磨斑面积不断增大。摩擦磨损开始以磨粒磨损为主,随着摩擦过程中挤压的加剧和温度的升高,磨屑发生塑性变形,形成不断增厚的转移层,覆盖于对磨面上,阻碍陶瓷涂层与对磨件的直接接触,从而减轻陶瓷涂层的摩擦磨损。  相似文献   

9.
本工作试验研究了用于机械,尤其是石油化工机械中的具有耐磨、耐蚀和耐热等多功能的陶瓷涂层。以氧化铬为研究对象,采用等离子喷涂技术,研究解决热喷涂陶瓷涂层中的三个主要问题,即涂层中的残余应力、微孔洞和层间界面的弱结合。为此,系统研究了喷涂工艺参数波动、涂层结构和添加剂对氧化铬陶瓷涂层组织和性能的影响及其相互关系;涂层的热震、磨损和腐蚀失效规律和机制;建立了陶瓷涂层抗热震失效寿命的表达式。结果表明,影响涂层性能最重要的工艺参数为电弧电流,其次为涂层厚度。从基体到陶瓷层,通过涂层成分逐渐变化可以制备梯度涂层,并且多层复合涂层的综合性能优于双层涂层,其中,四层阶梯复合涂层的综合性能最佳,其次是五层梯度涂层。在氧化铬材料中,加入3.0%氧化铈,可降低涂层中的孔隙率和孔洞尺寸,从而提高氧化铬涂层的综合性能;陶瓷涂层热震失效的本质为热疲劳失效。在滑动磨损条件下,涂层的磨损失效主要是循环接触应力导致的疲劳磨损。涂层的腐蚀失效是陶瓷层自身的化学腐蚀和粘结结层/基体界面的电化学腐蚀。试验结果证实了涂层热震失效寿命定量表达式的有效性和适用性。首先提出并定义的临界热震温差范围可作为评价涂层抗热冲击性能的指标和使用依据。  相似文献   

10.
热喷涂金属陶瓷涂层复合磨损失效机制   总被引:1,自引:0,他引:1  
热喷涂金属陶瓷涂层由于具有优异的耐磨性能,广泛应用于机械零部件的性能提升。热喷涂金属陶瓷涂层在复杂工况中服役时,在多种外界因素的复合作用下,会发生由磨粒磨损、腐蚀磨损、冲蚀磨损、疲劳磨损中的一种或几种作用导致的失效。结合涂层的服役工况和其自身结构特点归纳分析了热喷涂金属陶瓷涂层的复合磨损失效机制,并对热喷涂金属陶瓷涂层复合磨损失效研究的发展方向进行了展望。  相似文献   

11.
球锥面密封结构是航空航天及化学工业中普遍采用的密封结构,对其密封性能研究及改进具有一定的工程应用价值。球锥面加注管接头的主要材料是1Cr18Ni9Ti,当重复使用时,接触表面极易发生磨损,影响密封特性。针对上述问题,采用涂层表面处理技术,提高表面抗磨损性能和密封性能。借助ANSYS有限元软件,模拟分析了接触表面的应力分布情况。陶瓷涂层弹性模量越大,接触应力越大,密封性越好,但粘结强度较低。当涂层与基体弹性模量相接近时,粘结强度较好。因此对4种陶瓷涂层进行等离子喷涂并进行密封及磨损试验研究。结果表明:TiN涂层加注管接头黏着磨损及磨粒磨损现象有较大改善,重复使用效果最好。  相似文献   

12.
许焰  庞佑霞  张昊  唐勇  刘厚才 《材料保护》2013,46(5):24-26,2
为提高流体机械的耐空蚀性能,模拟实际工况,利用转盘式磨损试验装置研究了涂覆微/纳米复合涂层及另外4种传统表面处理方法处理的45钢的耐空蚀性能;采用失重法和扫描电镜(SEM)对空蚀磨损结果进行了分析。结果表明:5种试件的空蚀磨损机理基本相同,主要是材料表面在微射流的反复冲击下,产生塑性变形、疲劳凹坑和坑边缘的塑性堆积,从而导致材料的流失;与4种传统表面处理方法相比,微/纳米复合涂层的耐空蚀性能最好,空蚀磨蚀30 h后,基本没有失重。  相似文献   

13.
机械零部件的摩擦磨损主要发生在材料表面,约有80%的零件工作失效是由表面磨损造成的。摩擦磨损增加了材料和能量的损耗,降低了可靠性和安全性。使用激光熔覆技术在基体表面制备高熵合金涂层的方法,能够使涂层与基体实现良好的冶金结合,以达到提升表面耐磨性能的目的。影响高熵合金涂层耐磨性的因素主要有涂层材料的力学性能,如硬度、塑性和韧性;熔覆过程中产生的缺陷,如表面粗糙不平、气孔和裂纹;摩擦工况,如高温环境和腐蚀环境。本文分析总结了激光熔覆高熵合金涂层的耐磨性影响因素及强化机制。首先,阐明了激光工艺参数(激光功率、激光扫描速度、光斑直径)和后处理工艺(热处理和轧制)对涂层质量及性能的影响;其次,概述了组元元素选择、高温环境和腐蚀环境对涂层耐磨性的影响;最后,对激光熔覆技术制备高熵合金涂层存在的问题进行归纳分析,并对未来的发展趋势进行了展望,如基于远平衡态的材料设计理论研发新材料、利用电场-磁场协同或激光-超声振动复合等新工艺提升涂层耐磨性等。  相似文献   

14.
机械零部件的摩擦磨损主要发生在材料表面,约有80%的零件工作失效是由表面磨损造成的。摩擦磨损增加了材料和能量的损耗,降低了可靠性和安全性。使用激光熔覆技术在基体表面制备高熵合金涂层的方法,能够使涂层与基体实现良好的冶金结合,以达到提升表面耐磨性能的目的。影响高熵合金涂层耐磨性的因素主要有涂层材料的力学性能,如硬度、塑性和韧性;熔覆过程中产生的缺陷,如表面粗糙不平、气孔和裂纹;摩擦工况,如高温环境和腐蚀环境。本文分析总结了激光熔覆高熵合金涂层的耐磨性影响因素及强化机制。首先,阐明了激光工艺参数(激光功率、激光扫描速度、光斑直径)和后处理工艺(热处理和轧制)对涂层质量及性能的影响;其次,概述了组元元素选择、高温环境和腐蚀环境对涂层耐磨性的影响;最后,对激光熔覆技术制备高熵合金涂层存在的问题进行归纳分析,并对未来的发展趋势进行了展望,如基于远平衡态的材料设计理论研发新材料、利用电场-磁场协同或激光-超声振动复合等新工艺提升涂层耐磨性等。  相似文献   

15.
等离子喷涂WC/18Co涂层微动磨损机理的研究   总被引:3,自引:0,他引:3  
研究了等离子喷涂WC/18Co涂层的微动磨损机理,结果表明,涂层的微动磨损开始阶段以粘着磨损为主,涂层硬度高,抗粘着能力强,磨损轻微;稳定阶段以疲劳脱层和脆性开裂剥落为主,涂层脆性大,喷涂粒子间结合强度低,容易磨损。喷涂层内部的氧化物夹杂是造成涂层抗微动磨损能力不足的主要原因。  相似文献   

16.
机械零部件的摩擦磨损主要发生在材料表面,约有80%的零件工作失效是由表面磨损造成的。摩擦磨损增加了材料和能量的损耗,降低了可靠性和安全性。使用激光熔覆技术在基体表面制备高熵合金涂层的方法,能够使涂层与基体实现良好的冶金结合,以达到提升表面耐磨性能的目的。影响高熵合金涂层耐磨性的因素主要有涂层材料的力学性能,如硬度、塑性和韧性;熔覆过程中产生的缺陷,如表面粗糙不平、气孔和裂纹;摩擦工况,如高温环境和腐蚀环境。本文分析总结了激光熔覆高熵合金涂层的耐磨性影响因素及强化机制。首先,阐明了激光工艺参数(激光功率、激光扫描速度、光斑直径)和后处理工艺(热处理和轧制)对涂层质量及性能的影响;其次,概述了组元元素选择、高温环境和腐蚀环境对涂层耐磨性的影响;最后,对激光熔覆技术制备高熵合金涂层存在的问题进行归纳分析,并对未来的发展趋势进行了展望,如基于远平衡态的材料设计理论研发新材料、利用电场-磁场协同或激光-超声振动复合等新工艺提升涂层耐磨性等。  相似文献   

17.
利用不同热处理方式和球化工艺,获得两种显微组织和不同硬度的等温淬火球墨铸铁(Austempered Ductile Iron,ADI)材料,利用MMS-2A微机控制摩擦磨损试验机对比研究了两种等温淬火球墨铸铁材料、车轮材料与U71Mn钢轨匹配时的滚动磨损与损伤性能。结果表明:ADI材料与U71Mn钢轨匹配时的摩擦因数明显小于车轮材料;由于ADI材料具有自润滑效果导致其磨损率明显小于车轮材料,ADI材料的自润滑性能也降低了对摩副U71Mn钢轨的磨损率,其中含有较大球状石墨和较少残余奥氏体的ADI2材料和对摩副U71Mn钢轨的磨损率最小;ADI材料的磨损机制主要表现为轻微疲劳磨损,对摩副U71Mn钢轨的磨损机制主要表现为黏着和轻微疲劳磨损,而轮轨材料匹配时的塑性流动层显著,损伤以表面疲劳裂纹和剥层损伤为主。  相似文献   

18.
滑靴耐磨减摩涂层制备   总被引:1,自引:0,他引:1       下载免费PDF全文
目的制备减摩耐磨涂层,使滑靴在高速干摩擦条件下运动时能够减弱由于颗粒磨损、表面凿削和高温热烧蚀而引起的烧蚀和磨损。方法使用超音速火焰喷涂技术,在滑靴滑轨同材料试样上喷涂NiCr-Cr_3C_2耐磨涂层,并且加入不同质量分数的Ni包MoS_2粉末对涂层性能进行优化,接着通过对制得的涂层进行硬度、结合强度、摩擦磨损系列试验,对比各项试验结果得到了最优粉末质量分数配比,从而使制得的涂层在具有耐磨基础的同时也能达到减摩的效果。结果对涂层进行各种性能表征,综合各种试验结果可得出,选择Ni包MoS_2的质量分数为16%~24%之间时,涂层的综合效果最好。结论制得的涂层应用在滑靴摩擦表面上不仅可以使滑靴基体的表面温升缓慢,还能够极大程度上降低热烧蚀的发生,有效解决了滑靴高速运动下由于温升而使材料气化的问题。  相似文献   

19.
高速电弧喷涂Fe-Al/WC复合涂层的高温摩擦磨损特性   总被引:5,自引:3,他引:2  
采用滑动磨损试验方法研究在室温至650℃温度下高速电弧喷涂Fe—A1/WC金属间化合物复合涂层与Si3N4陶瓷球配副时的摩擦磨损特性,并探讨复合涂层的高温摩擦磨损机理。结果表明,随着试验温度的升高,Fe—Al/WC复合涂层的摩擦系数降低,而磨损率仍保持在较低的水平。高温下复合涂层滑动摩擦系数降低的主要原因是由于磨损面发生摩擦氧化反应而形成的起到固体润滑的作用氧化物保护层。剥层磨损是Fe—Al/WC复合涂层高温磨损的主要机理。涂层中Fe3Al和FeAl金属间化合物相较高的高温强度和硬度,能有效地阻碍裂纹的产生、扩展及扁平颗粒的断裂,从而使复合涂层表现出优异的高温耐磨性。650℃时Fe—Al/WC复合涂层的磨损率有所提高,这可能与高温下涂层表面WC颗粒的氧化和脱碳分解有关。  相似文献   

20.
以Q235钢为基体材料,采用室温空压喷涂的方法制备了纯聚酰胺酰亚胺(PAI)涂层及SiC和聚四氟乙烯(PTFE)填充的PAI复合涂层。采用MMW-1型万能摩擦磨损试验机对涂层进行了摩擦磨损试验,当SiC和PTFE的填充量分别为10%和0.8%时,PAI复合涂层摩擦学性能达到最优。对于纯PAI和PAI+10%SiC复合涂层,在40 N的载荷下,滑动速率的增加会导致摩擦系数的降低,但会降低其耐磨性。然而,在120 N的高载荷下,其在低中滑动速率下表现出最高的摩擦系数和磨损率。对于SiC+10%SiC+0.8%PTFE复合涂层,由于PTFE的加入,随着载荷的增大,摩擦系数逐渐减小,而磨损率先增大后基本保持不变;滑动速率的提高只会减小摩擦系数和磨损率。热重曲线表明,复合涂层的起始分解温度为410℃,而纯PAI涂层起始分解温度为350℃。磨损涂层的扫描电镜图像揭示了涂层的磨损机理,纯PAI涂层为磨粒磨损,SiC/PAI复合涂层是犁耕磨损,而SiC/PTFE/PAI复合涂层摩擦后只有轻微的塑性形变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号