首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.  相似文献   

2.
KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells. Since KIT is activated by overexpression or mutation and plays an important role in the development of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling via next-generation sequencing has shown that several genes that are mutated in patients with AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treatment using genomic data will improve treatment outcomes for AML patients. This paper presents (1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT mutations from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is becoming more common, KIT mutations are attractive novel molecular targets in AML.  相似文献   

3.
Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40–60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies’ (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness.  相似文献   

4.
Suppressor with morphogenetic effect on genitalia family member (SMG1) belongs to a family of phosphoinositide 3-kinase-related kinases and is the main kinase involved in nonsense-mediated mRNA decay. Recently, SMG1 was suggested as a novel potential tumor suppressor gene, particularly in hypoxic tumors. To investigate the function of SMG1 in acute myeloid leukemia (AML), we performed methylation-specific polymerase chain reaction and found that SMG1 was hypermethylated in the promoter region. SMG1 hypermethylation was found in 66% (33/50) of AML samples compared with none (0/14) of the normal controls. SMG1 mRNA was down-regulated in AML patients with hypermethylation status whereas it was readily expressed in patients without methylation. Moreover, treatment of AML cells with demethylating agent 5-aza-2''-deoxycytidine (decitabine) inhibited AML cell growth and induced apoptosis by reversing SMG1 methylation status and restoring SMG1 expression. On the other hand, knockdown of SMG1 by RNA interference inhibited apoptosis. We also found that mTOR expression level was negatively correlated to SMG1 expression in AML patients which indicated that SMG1 and mTOR maybe act antagonistically to regulate AML cell growth. In conclusion, our results indicate that SMG1 acts as a potential tumor suppressor with epigenetic regulation in AML.  相似文献   

5.
Acute myeloid leukemia (AML) is a heterogenous hematopoietic neoplasm with various genetic abnormalities in myeloid stem cells leading to differentiation arrest and accumulation of leukemic cells in bone marrow (BM). The multiple genetic alterations identified in leukemic cells at diagnosis are the mainstay of World Health Organization classification for AML and have important prognostic implications. Recently, understanding of heterogeneous and complicated molecular abnormalities of the disease could lead to the development of novel targeted therapeutic agents. In the past years, gemtuzumab ozogamicin, BCL-2 inhibitors (venetovlax), IDH 1/2 inhibitors (ivosidenib and enasidenib) FLT3 inhibitors (midostaurin, gilteritinib, and enasidenib), and hedgehog signaling pathway inhibitors (gladegib) have received US Food and Drug Administration (FDA) approval for the treatment of AML. Especially, AML patients with elderly age and/or significant comorbidities are not currently suitable for intensive chemotherapy. Thus, novel therapeutic planning including the abovementioned target therapies could lead to improve clinical outcomes in the patients. In the review, we will present various important and frequent molecular abnormalities of AML and introduce the targeted agents of AML that received FDA approval based on the previous studies.  相似文献   

6.
Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML.  相似文献   

7.
Genomic instability is prevented by the DNA damage response (DDR). Micronutrients, like zinc (Zn), are cofactors of DDR proteins, and micronutrient deficiencies have been related to increased cancer risk. Acute myeloid leukemia (AML) patients commonly present Zn deficiency. Moreover, reports point to DDR defects in AML. We studied the effects of Zn in DDR modulation in AML. Cell lines of AML (HEL) and normal human lymphocytes (IMC) were cultured in standard culture, Zn depletion, and supplementation (40 μM ZnSO4) conditions and exposed to hydrogen peroxide (H2O2) or ultraviolet (UV) radiation. Chromosomal damage, cell death, and nuclear division indexes (NDI) were assessed through cytokinesis-block micronucleus assay. The phosphorylated histone H2AX (yH2AX) expression was monitored at 0 h, 1 h, and 24 h after exposure. Expression of DDR genes was evaluated by quantitative real time polymerase chain reaction (qPCR). Zn supplementation increased the genotoxicity of H2O2 and UV radiation in AML cells, induced cytotoxic and antiproliferative effects, and led to persistent yH2AX activation. In contrast, in normal lymphocytes, supplementation decreased damage rates, while Zn depletion favored damage accumulation and impaired repair kinetics. Gene expression was not affected by Zn depletion or supplementation. Zn presented a dual role in the modulation of genome damage, preventing damage accumulation in normal cells and increasing genotoxicity and cytotoxicity in AML cells.  相似文献   

8.
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.  相似文献   

9.
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a dismal prognosis. The cytoplasmic spleen tyrosine kinase (SYK) is highly expressed by hematopoietic cells and has emerged as a potential therapeutic target. In this study, we evaluated the in vitro antileukemic effects of five SYK inhibitors, fostamatinib, entospletinib, cerdulatinib, TAK-659, and RO9021, in a consecutive AML patient cohort. All inhibitors demonstrated a concentration-dependent antiproliferative effect, although there was considerable heterogeneity among patients. For fostamatinib and TAK-659, the antiproliferative effects were significantly higher in FLT3 mutated patients compared to nonmutated patients. Fostamatinib, entospletinib, TAK-659, and RO9021 induced significant apoptosis in primary AML cells, although the proapoptotic effects of the SYK inhibitors were less pronounced than the antiproliferative effects. Finally, most of the SYK inhibitors caused a significant decrease in the release of cytokines and chemokines from primary AML cells, indicating a potent inhibitory effect on the release of these leukemic signaling molecules. We concluded that the SYK inhibitors had antileukemic effects in AML, although larger studies are strongly needed to identify which patient subsets will benefit most from such a treatment.  相似文献   

10.
Non-relapse mortality due to GVHD and infections represents a major source of morbidity and mortality in pediatric HSCT recipients. Post-transplant cyclophosphamide (PTCy) has emerged as an effective and safe GVHD prophylaxis strategy, with improved GVHD and relapse-free survival in matched (related and unrelated) and mismatched haploidentical HSCT adult recipients. However, there are no published data in pediatric patients with acute myeloid leukemia who received matched-donor HSCT with PTCy. We demonstrate, in this case series, that the use of PTCy in this population is potentially safe, effective in preventing acute GVHD, does not impair engraftment, is associated with reduced non-relapse mortality, and does not hinder immune reconstitution post HSCT.  相似文献   

11.
For decades, intensive chemotherapy (IC) has been considered the best therapeutic option for treating acute myeloid leukemia (AML), with no curative option available for patients who are not eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine formulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly patients from the perspective of improved quality of life and better survival. Venetoclax is currently under investigation in combination with other old and new drugs in early phase trials. Recently developed drugs with different mechanisms of action and new technologies that have already been investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and ongoing trials should determine promising agents, more synergic combinations, and better treatment strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to provide scientific evidence and to define the future standard of treatment in AML.  相似文献   

12.
Despite many recent advances in treatment options, acute myeloid leukemia (AML) still has a high mortality rate. One important issue in optimizing outcomes for AML patients lies in the limited ability to predict response to specific therapies, duration of response, and likelihood of relapse. With evolving genetic characterization and improving molecular definitions, the ability to predict outcomes and long-term prognosis is slowly improving. The majority of the currently used prognostic assessments relate to molecular and chromosomal abnormalities, as well as response to initial therapy. These risk categories, however, do not account for a large amount of the variability in AML. Laboratory techniques now utilized in the clinic extend beyond bone marrow morphology and single gene sequencing, to next-generation sequencing of large gene panels and multiparameter flow cytometry, among others. Other technologic advances, such as gene expression analysis, have yet to demonstrate enough predictive and prognostic power to be employed in clinical medicine outside of clinical trials, but may be incorporated into the clinic in the future. In this review, we discuss the utility of current biomarkers, and present novel biomarker techniques and strategies that are in development for AML patients. Measurable residual disease (MRD) is a powerful prognostic tool that is increasingly being incorporated into clinical practice, and there are some exciting emerging biomarker technologies that have the potential to improve prognostic power in AML. As AML continues to be a difficult-to-treat disease with poor outcomes in many subtypes, advances in biomarkers that lead to better treatment decisions are greatly needed.  相似文献   

13.
T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy.  相似文献   

14.
Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.  相似文献   

15.
Mutation of the tumor suppressor gene, TP53, is associated with abysmal survival outcomes in acute myeloid leukemia (AML). Although it is the most commonly mutated gene in cancer, its occurrence is observed in only 5–10% of de novo AML, and in 30% of therapy related AML (t-AML). TP53 mutation serves as a prognostic marker of poor response to standard-of-care chemotherapy, particularly in t-AML and AML with complex cytogenetics. In light of a poor response to traditional chemotherapy and only a modest improvement in outcome with hypomethylation-based interventions, allogenic stem cell transplant is routinely recommended in these cases, albeit with a response that is often short lived. Despite being frequently mutated across the cancer spectrum, progress and enthusiasm for the development of p53 targeted therapeutic interventions is lacking and to date there is no approved drug that mitigates the effects of TP53 mutation. There is a mounting body of evidence indicating that p53 mutants differ in functionality and form from typical AML cases and subsequently display inconsistent responses to therapy at the cellular level. Understanding this pathobiological activity is imperative to the development of effective therapeutic strategies. This review aims to provide a comprehensive understanding of the effects of TP53 on the hematopoietic system, to describe its varying degree of functionality in tumor suppression, and to illustrate the need for the adoption of personalized therapeutic strategies to target distinct classes of the p53 mutation in AML management.  相似文献   

16.
Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) represent an unmet clinical need whose prognosis is still dismal. Alterations of immune response play a prominent role in AML/MDS pathogenesis, revealing novel options for immunotherapy. Among immune system regulators, CD47, immune checkpoints, and toll-like receptor 2 (TLR2) are major targets. Magrolimab antagonizes CD47, which is overexpressed by AML and MDS cells, thus inducing macrophage phagocytosis with clinical activity in AML/MDS. Sabatolimab, an inhibitor of T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which disrupts its binding to galectin-9, has shown promising results in AML/MDS, enhancing the effector functions of lymphocytes and triggering tumor cell death. Several other surface molecules, namely CD33, CD123, CD45, and CD70, can be targeted with monoclonal antibodies (mAbs) that exert different mechanisms of action and include naked and conjugated antibodies, bispecific T-cell engagers, trispecific killer engagers, and fusion proteins linked to toxins. These novel mAbs are currently under investigation for use as monotherapy or in combination with hypomethylating agents, BCL2 inhibitors, and chemotherapy in various clinical trials at different phases of development. Here, we review the main molecular targets and modes of action of novel mAb-based immunotherapies, which can represent the future of AML and higher risk MDS treatment.  相似文献   

17.
Weight loss and metabolic activity influence outcome after allogeneic stem cell transplantation (alloSCT). This study evaluates pre-conditioning Leptin, a peptide hormone involved in metabolism and immune homeostasis, as a prognostic factor for survival, relapse and non-relapse mortality (NRM) following alloSCT. Leptin serum levels prior to conditioning were determined in a cohort of patients transplanted for various hematologic malignancies (n = 524) and correlated retrospectively with clinical outcome. Findings related to patients with acute leukemia (AL) from this sample were validated in an independent cohort. Low pre-conditioning serum Leptin was an independent prognostic marker for increased risk of relapse (but not of NRM and overall mortality) following alloSCT for AL of intermediate and advanced stage (beyond first complete remission). Multivariate analysis revealed a hazard ratio (HR) for relapse of 0.75 per log2 increase (0.59–0.96, p = 0.020). This effect was similar in an independent validation cohort. Pre-conditioning serum Leptin was validated as a prognostic marker for early relapse by fitting the multivariate Cox model to the validation data. Pre-conditioning serum Leptin levels may serve as an independent prognostic marker for relapse following alloSCT in intermediate and advanced stage AL patients. Prospective studies are required to prove whether serum Leptin could be used for guiding nutritional intervention in patients with AL undergoing alloSCT.  相似文献   

18.
目的 体外诱导慢性粒细胞白血病 (CML)患者外周血单个核细胞 (PBMCs)为树突状细胞 (DCs) ,并对其形态、表型及对T细胞刺激增殖作用进行研究。方法 利用GM CSF、IL 4、TNF α体外定向诱导生成树突状细胞 ,对所诱生的细胞进行细胞表型及形态检测 ,用D FISH方法检测所诱生DCs的白血病源性 ,应用MTT法检测所诱生的DCs刺激T细胞增殖的能力。结果 CML患者PBMCs在体外可诱导生成bcr/abl融合基因阳性的DCs(CMLDCs)。CMLDCs对自体T细胞有明显刺激增殖作用 ,而CML细胞无此作用。CMLDCs刺激同一异体T细胞增殖能力弱于正常DCs,但当培养体系中加入 30 0U/ml干扰素 α(IFN α)时可使其刺激能力接近正常DCs。结论 CMLDCs具有刺激自体及异体T细胞增殖的能力 ,但对异体T细胞的刺激作用弱于正常DCs,IFN α可提高CMLDCs刺激T细胞增殖能力  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号