首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of core–shell structured silver/polyimide (PI) nanocomposites was prepared by in situ polymerization followed by the chemical imidization of poly(amic acid) (PAA, precursor of PI) at a low temperature. The TEM images showed that the silver cores of the nanocomposites were encapsulated with homogeneous shells with thickness of 4 and 8 nm at silver contents of 90 and 60 %, respectively. The shell thickness was controlled by varying the content of PAA. FTIR spectroscopic analysis indicated that the imide ring formation occurred after the chemical imidization. The Ag/PI nanocomposites showed excellent thermal stability and exhibited only 10 % weight loss at 300 °C in the air. Moreover, percolation was observed at silver weight fractions close to the critical value, and the maximum dielectric permittivity of the nanocomposites was 120, which is about 40 times higher than that of pristine PI.  相似文献   

2.
We successfully prepared poly(methyl methacrylate) (PMMA)–graphene oxide (GO) and PMMA–GO–zinc oxide (ZnO) nanocomposites and characterized them using different techniques. The adsorption performances of the as-prepared composites were investigated for crystal violet (CV) dye removal. The contact time as a main factor affecting the adsorption process by adsorbents was studied. Because the adsorption capacity value for CV was found to show no extensive changes after 35 min, 35 min was selected as the best contact time for our system. The adsorption results revealed that the best capacity of CV adsorption onto the PMMA–GO and PMMA–GO–ZnO nanocomposites occurred at pH 12 and 298 K. The respective entropies (−0.208 and −0.168 kJ mol−1 K−1) and enthalpies (−72.86 kJ/mol, and −55.54 kJ/mol) for PMMA–GO and PMMA–GO–ZnO and Gibbs energy revealed that the process of adsorption was exothermic. In addition, the Elovich, pseudo-first-order, intraparticle diffusion, and pseudo-second-order (four types) models were applied to our kinetic study. Our results indicate that CV adsorption onto PMMA–GO and PMMA–GO–ZnO was good with the pseudo-second-order (type 1) and pseudo-first-order models because of the low χ2 value and the high correlation coefficient value. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47495.  相似文献   

3.
The mechanical properties, thermomechanical properties, and fracture mechanic properties of block-copolymer (BCP), core–shell rubber (CSR) particles, and their hybrids in bulk epoxy/anhydride system were investigated at 23 °C. The results show that fracture toughness was increased by more than 268% for 10 wt % BCP, 200% for 12 wt % of CSR particles, and 100% for hybrid systems containing 3 wt % of each, BCP and CSR. The volume content of nanoparticles influences the final morphology and thus influences the tensile properties and fracture toughness of the modified systems. The toughening mechanisms induced by the BCP and CSR particles were identified as (1) localized plastic shear-band yielding around the particles and (2) cavitation of the particles followed by plastic void growth in the epoxy polymer. These mechanisms were modeled using the Hsieh et al. approach and the values of GIc of the different modified systems were calculated. Excellent agreement was found between the predicted and the experimentally measured fracture energies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48471.  相似文献   

4.
Glassy unsaturated polyester (UP) resin was reinforced using an organically modified montmorillonite (OMMT) and toughened with core?Cshell rubber (CSR) particles. The nanostructure, morphology, and deformation mechanism of composite specimens were studied by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM) and reflected optical microscopy (ROM). An intercalated nanostructure with partial exfoliation was observed in the UP reinforced by various amounts of OMMT. Locally clustered but globally good CSR particle dispersion in the UP matrix was evident in UP toughened with 5 and 10 wt% CSR particles. Simultaneous presence of OMMT and CSR particles in UP/OMMT/CSR hybrid composites was found to cause partial phase separation with bigger rubber particle agglomerates and lower clay-intergallery height increase. The effects of OMMT and CSR contents on volume shrinkage, impact fracture energy, fracture toughness, and compressive yield strength of UP were investigated. The introduction of OMMT of up to 3?wt% into the UP matrix lowered volume shrinkage to some extent, while further addition increased the shrinkage slightly. In the hybrid nanocomposites, the volume shrinkage decreased to a minimum level of 5.2?% with increases in OMMT level. The impact fracture energy of UP improved with increasing the OMMT level of up to 3?wt%, whereas its further addition decreased the impact fracture energy slightly due to the clay particle agglomeration. The hybrid composites with OMMT level below 3?wt% showed higher impact fracture energy compared to the reinforced UP specimens with the same OMMT levels. Interestingly, a synergism in the fracture toughness (K IC) was observed in the hybrid composite containing 1?wt% OMMT and 10?wt% CSR particles. The presence of OMMT as reinforcement in the hybrid composites could compensate the lowering of the compressive yield strength caused by low-modulus CSR particles. The clay?Crubber particle interaction in the hybrid systems seems to increase the threshold of shear deformation of the UP matrix to some extent.  相似文献   

5.
Rama K. Layek 《Polymer》2010,51(24):5846-5856
Poly(methyl methacrylate) -functionalized graphene (MG) is prepared from graphene oxide (GO), using atom transfer radical polymerization (ATRP) and reducing with hydrazine hydrate. PMMA causes an increase of height of MG sheet for polymerization of MMA at side and basal planes. MG layers become thinner for exfoliation during composite formation. Graphene sheets enhance piezoelectric β-polymorph PVDF formation. MG sheets nucleate PVDF crystals and a gradual decrease of α phase occurs with a concomitant rise of β phase. Thermal stability of nanocomposites increases significantly and the Tg increase is really large (21 °C). Storage modulus shows an increase of 124%, stress at break 157% and Young’s modulus 321% for 5% MG. Parallel orientation of graphene sheets changes to random orientation for high graphene content. It exhibits conducting percolation threshold at 3.8% MG and variable range hopping model suggests that conductivity is contributed from the intergrain tunnelling and hopping between the grains.  相似文献   

6.
This work describes a novel one-step method to prepare poly(AMm-co-AAcNa) pH-sensitive hydrogel beads with core–shell structure induced by a spontaneous phase separation process during polymerization. In virtue of the phase separation process, polymers with high molecular weight separate to the core phase whereas monomers are left in the shell. This redistribution inside the droplets enables the polymerization environment change sharply to endow the beads with different network structure in core and shell. FTIR spectrum and EDS show that core and shell share identical composition; yet GPC exhibits a bimodal molecular weight distribution which lead to a conventional network in core but a rich-in-branch network in shell. This difference in structure results in mainly three discrepancies in performance. The level of volume change that the beads exhibit at about pH = 4 is much more intense for shell than for core; the swelling/shrinking kinetics of the core and shell indicates that shell responses about 30 times faster than core does; fitting of the absorbency capacity exhibited that the ones of the core and shell are about 67 g/g and 2126 g/g, respectively. A microfluidic device with co-axial channel structure is introduced in this fabrication. The hydrogel beads exhibited narrow size distribution and the diameter of core and shell could be freely controlled by the high controllability of microfluidic technology and by manipulating the phase separation process. In sum, this method impart us an easy and fast-running way to obtain hydrogel beads with core–shell structure, which has potential in various applications like optical material, lenses and sensors.  相似文献   

7.
Work on interdiffusion has been mainly carried out in binary systems in the past, and this work has focused on polymer–solvent (S) systems and polymer blends. To understand and predict the interdiffusion of two solids in the presence of one S, we present a new mathematical model based on the Onsager approach. Within our model, interdiffusion kinetics are described with a modification of the reptation model for long polymer chains, and the chemical potential gradient is used as the driving force behind mass transfer. The chemical potential is calculated with a Flory–Huggins approach. The model was validated with 29 Raman spectroscopy experiments in poly(vinyl acetate)–poly(methyl methacrylate)–toluene systems at 20 °C. Monomer mobilities (L i,0s) were determined for both polymers to show the independence of L i,0 from the chain length. The L i,0s were found to be strongly dependent on the S content. With the knowledge of phase equilibria and L i,0s, interdiffusion in the ternary polymer–polymer–S system could be predicted by the introduced model. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47092.  相似文献   

8.
In this paper, we have explored the potential of core–shell poly(siloxane)-epoxy microspheres towards improving the dynamic properties of a conventional unsaturated polyester (USP). Micro-sized poly(siloxane) beads were prepared by suspension polymerisation route, where the particle dimensions could be tailored by varying the operating parameters, particularly stirring speed and feed concentration. The core was subsequently coated with epoxy to form an external layer compatible with the USP resin, with an aim to aid its homogeneous dispersion in the thermosetting resin. Toughened USP composites containing varying amounts of both coated and uncoated microspheres (3–10 % w/w) were prepared by curing under ambient conditions, and their mechanical properties were evaluated under both quasi-static and dynamic loading conditions. The introduction of epoxy-coated poly(siloxane) led to a proportional decrease in the tensile strength and modulus, which were found to compare well with the predictions based on Halpin–Tsai and Lewis–Nielson empirical models. Significant improvements in the impact strength of USP could be achieved, and under optimised conditions, 101 % increase in the impact strength was observed, which corroborated with significant increase in mean critical stress intensity factor (76 %). Morphological investigations of the fractured surface revealed the presence of characteristic features which were used to establish the underlying routes responsible for the toughened nature of the USP composites.  相似文献   

9.
Summary α-Amino, ω-carboxyl heterodifunctional poly(methyl methacrylate) was prepared by a living anionic polymerization of methyl methacrylate using N,N'-diphenylethylenediamine monolithium amide and succinic anhydride as an initiator and terminator, respectively. Its intramolecular cyclization was carried out to obtain a well-defined cyclic poly(methyl methacrylate). Received: 27 June 2001/Accepted: 16 July 2001  相似文献   

10.
To enhance the reinforcement effects of regenerated cellulose nanofibers (RC-NF) in poly(ε-caprolactone) (PCL), we synthesized RC-NF-3-aminopropyltriethoxysilane (APS), the surface-modified RC-NF by APS. The RC-NF were fabricated by the saponification of electrospun cellulose–acetate nanofibers. The surface modification by APS was confirmed by the X-ray photoelectron spectroscopy (XPS). To enhance the mechanical property of PCL, the RC-NF and the RC-NF-APS were separately compounded into PCL by compression molding. It was found that, when the fiber concentration of RC-NF-APS was 17 wt %, the Young's modulus at room temperature increased from 698.0 to 744.7 MPa, whereas the storage modulus at 55 °C almost increased from 180 to 220 MPa. The micrographs of the fracture surface of the composites revealed that the surface modification prevented the pull-out of RC-NF from PCL. It was concluded that the mechanical properties of the composites were enhanced due to the improvement of the compatibility between RC-NF and PCL by the surface modification with APS. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48599.  相似文献   

11.
To analyze the interplay between crystallization and liquid–liquid phase separation (LLPS), isothermal crystallization behavior of poly(ethylene glycol) (PEG) in blends with isotactic poly(methyl methacrylate) (i-PMMA) was investigated by differential scanning calorimetry (DSC). The blend system had an upper critical solution temperature (UCST) type phase diagram. When the crystallization occurred simultaneously with LLPS, the overall crystallization rate was enhanced at high crystallization temperatures Tc, relatively compared with that of neat PEG. This behavior was interpreted by the combination of the effects of spinodal quench depth ?Ts and usual supercooling degree ?Tc, according to the theory of Mitra and Muthukumar, namely, the crystallization rate is enhanced by the concentration fluctuation-assisted nucleation at high Tc. In the crystallization after LLPS proceeded, on the other hand, the overall crystallization rate was slow and less dependent on the blend composition. In addition, it was revealed by small-angle X-ray scattering measurements that amorphous i-PMMA was excluded from the interlamellar region of PEG crystals in SQ as well as WQ.  相似文献   

12.
Preparation of novel polyethylene/carbon nanotubes (CNTs) nanocomposites with core–shell structure was presented. The method involved in situ ethylene polymerization in which nanotube surface was treated with Grignard Agent, followed by reacting with active transition metal compound, TiCl4. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerize ethylene to form polymer nanocomposite. MWCNTs were homogeneously dispersed within polymer matrix, and as expected, the resultant nanocomposites featured core–shell structure which was confirmed by HRTEM. For the nanocomposite, the microscopic examination of the cryogenically fractured surface not only ensured a good distribution of carbon nano-particles in the PE matrix but also revealed the ductile-like fracture. The Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were employed for the study of covalent sidewall functionalization and chemical bonding environment of MWCNTs, also indicated effective immobilization of titanium catalyst on the MWCNTs surface. The crystalline properties, dielectric property and thermal stability of the nanocomposites were determined by WAXD, impedance analyzer and TGA. The dielectric result showed a slight decline of the dielectric constant of the nanocomposites with increase of the polymerization time, and lower dielectric loss was also observed.  相似文献   

13.
The polyvinylpyrrolidone (PVP)/poly(vinylidene fluoride) (PVDF) core–shell nanofiber mats with superhydrophobic surface have been prepared via electrospinning its homogeneous blending solutions, and the formation of the core–shell structure was achieved by the thermal induced phase separation assisted with the low surface tension of PVDF. The electrospinnability of the blending solutions was also investigated by varying the blending ratio of the PVP and PVDF, and it enhanced with the increase of PVP content. SEM and TEM results showed that the fibers size was varied in the range of 100 nm–600 nm with smooth surface and core–shell structure. The composition of the shell layer was determined by the XPS analysis, and further confirmed by water contact angle (WCA) testing. As the fraction of PVDF exceeding PVP in the electrospinning solutions, the nanofiber mats showed superhydrophobic property with the WCA above 120°. It indicated that the PVDF was concentrated in the shell layer of the fibers. X-Ray diffraction (XRD) and attenuated total reflection infrared spectroscopy (ATR-IR) analysis indicated that the PVDF was aggregated with the β-phase crystallite as dominant crystallite. The nanofiber mats with the gas breathability and watertightness ability due to the porous structure and superhydrophobic would be potential applied in wound healing.  相似文献   

14.
Inorganic-organic hybrid solar cells have demonstrated great potential for the development of next generation flexible electronics to deliver efficient energy conversion. The interfacial morphology and structure between donor and acceptor are determinative to the device performance. Here, we report on novel core–shell hybrid heterojunction nanostructures by covalently grafting side-functionalized poly(3-hexylthiophene) onto ZnO nanowires without ligand linkers. Solvatochromism of polythiophene is utilized to control the polymer morphology at interface. Study into the photophysics of nanohybrids demonstrates an elongated conjugation length of the polymer backbone at the interface and fast interfacial charge transfer. These results provide critical insight into the utilization of molecular composites to control donor–acceptor interfaces and further enable the use of anisotropic nanohybrids as photovoltaic elements for the massive fabrication of high efficiency devices.  相似文献   

15.
Radical copolymerization of di(isobutoxy)methylvinylsilane 1 and di(isobutoxy)phenylvinylsilane 2 with methyl methacrylate (MMA) and n-butyl acrylate (n-BA) was carried out, and the oxidative cleavage of Si–C bonds in the resulting copolymers was examined to prepare copolymers having repeating units of vinyl alcohol (VA). Although the incorporation of 1 and 2 in the copolymerization of these alkoxyvinylsilanes with MMA was not so effective (1 or 2 content < 18 mol%), MCPBA-induced oxidative transformation of a poly(2-co-MMA) with 9.0 mol% of 2 content proceeded efficiently, giving a poly[(vinyl alcohol)-co-MMA]. On the other hand, whereas poly(1 or 2-co-n-BA)s with relatively higher 1 or 2 contents (up to 45 mol%) can be prepared by the radical copolymerization of 1 or 2 with n-BA, oxidation of the copolymers afforded insoluble products.  相似文献   

16.
Thermally conductive epoxy nanocomposite with core–shell structured filler beads has been prepared. The core represents plasma-treated poly(methyl methacrylate) bead, and the shell, amine-functionalized reduced graphene oxide (frGO) sheets. The negatively charged core and the positively charged shell form core–shell unified structure through electrostatic attraction and the conductive bridges are formed among neighboring filler particles in the composite mass. The epoxy composite prepared with these core–shell structured filler shows a thermal conductivity of 0.72 W m−1 K−1 for an overall frGO concentration of as low as 0.96 wt %. Pal model has been applied to evaluate the effective thermal conductivity of frGO sheets that have been realized in the epoxy composition. Assuming the maximum possible volume packing fraction of the spherical beads for random jamming to be equal to 0.63, the effective thermal conductivity has been estimated as 280 W m−1 K−1. Evaluation of the effective thermal conductivity is a step forward to in-depth study of real contribution of the highly conductive fillers in the polymer composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47377.  相似文献   

17.
Poly(methyl methacrylate) (PMMA) based dental prosthetic materials have an inferior transverse resistance value and a high water-retention capacity. These drawbacks cause frequent prosthesis fractures both inside and outside the mouth, which require the remaking or repair of the prosthesis. The mechanical and physical durability of the polymer matrix can be improved by the incorporation of a multifunctional filler. In this study, we focused on the reinforcing effect of silver nanoparticles (AgNPs) on the flexural properties of PMMA. Apart from that, the transport behavior of water and saliva through this composite matrix was also studied extensively. Morphological analyses with scanning electron microscopy (SEM) and atomic force microscopy imaging techniques confirmed the uniform distribution of nanoparticles in the matrix with an increased surface roughness proportionate to the amount of AgNPs. The flexural strength and modulus were enhanced by the addition of up to 5 wt % AgNPs (p < 0.05); we also observed a significant increase in the fracture resistance. The SEM micrographs of the fractured ends of AgNP-reinforced groups had smaller cracks compared to the large multidirectional cracks in the unreinforced group. The diffusion of oral fluid through the composite was investigated in detail as a function of the AgNP content, the nature of the solvent (water or saliva), and the temperature (5, 28, 37, or 60°C). The water and saliva uptake, diffusion, sorption, and permeation constants were investigated and were found to decrease with increasing AgNP loading. The transport properties could have been related to the morphology of the nanocomposites and followed the Korsmeyer–Peppas model. At high concentrations, the AgNPs formed a local filler–filler network in the polymer matrix. This network hindered the transport of water and saliva through the polymer. The outcome deduced from this study confirmed that the reinforced nanocomposites improved the durability of the denture base and could be an effective replacement for the conventional denture base. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47669.  相似文献   

18.
用籽晶法,以甲醛为还原剂、3-氨丙基三乙氧基硅烷(APS)为改性剂,在Ag[(NH3)2+溶液中制备α-Fe2O3/Ag核壳结构复合粉体。采用XRD、TEM和EDX对样品进行表征,系统研究了APS改性剂、醇水比等对复合纳米颗粒包覆效果及性能的影响;并用吡啶(Py)为探针,研究了α-Fe2O3/Ag核壳纳米颗粒作为拉曼衬底时的拉曼增强性能相似文献   

19.
The effect of core–shell rubber (CSR) toughening on mechanical and thermal properties of poly(lactic acid)/multiwalled carbon nanotubes (PLA/CNT) nanocomposites were investigated. The nanocomposites were prepared by direct melt blending method in a counter-rotating twin-screw extruder. The contents of CSR were varied between 5 and 20 wt % while the content of CNT was kept at 5 phr. The extruded samples were injection molded into the desired test specimens for mechanical and thermal properties analysis. The impact strength of PLA/CNT increased with increasing CSR content with concomitant decrease in tensile strength and modulus. Interestingly, the flexural strength increased at low CSR content before decreasing at 15 and 20% content. Differential scanning calorimetry analysis on the second heating cycle shows no crystallinity content for PLA/CNT and all CSR toughened PLA/CNT nanocomposites, while thermogravimetric analysis shows lower thermal degradation of all CSR toughened PLA/CNT as compared to PLA/CNT nanocomposite. This study reveals significant correlation between CSR loading with the mechanical and thermal properties of the nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47756.  相似文献   

20.
In the present study, the interpenetrated polymer networks (IPN) foams of polyurethane (PU) and poly(methyl methacrylate) (PMMA) with different ratio of PU/PMMA (i.e. 85/15, 75/25 and 65/35) were prepared using the polymerisation process. The acoustical, damping and thermal properties of synthesised IPN foams with regard to different compositions were studied. As indicators of effective damping capability, viscoelastic parameters including loss factor (tan δ), glass transition temperature (Tg) and effective damping interval (tan δ?>?0.3) were also determined. The results show that the Tg shifted to higher temperature ranges, and the damping temperature range (tan δ?>?0.3) increased when the IPN was formed. The sound absorption coefficient results show that because of the formation of IPN, the sound-absorbing capacity of prepared samples increased at a certain frequency, and the resonance frequency shifted to lower frequencies by increasing the PMMA content in IPN foams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号