首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aiming to investigate the smoke suppression mechanism of ferrocene in model polystyrene (PS) during combustion, we exploited the vapor‐phase and condensed‐phase behaviors. Cone calorimeter testing result showed that 3 wt% ferrocene imparted PS with 56.9% reduction in total smoke production. The analysis of the char after cone calorimeter testing demonstrated that the condensed‐phase smoke suppression mechanism was weak owing to the absence of charring behavior. The vapor‐phase mechanism was focused on the analysis of the small‐molecule smoke precursors and initially formed smoke intermediates. Transmission electron microscopy of initially formed smoke intermediates of PS/3Ferrocene revealed that enormous γ‐Fe2O3 nanoparticles from ferrocene participated in the initial formation of smoke intermediates, which subsequently underwent notable thermal oxidation degradation with decreased smoke residue. Thermogravimetric analysis coupled with Fourier transform infrared spectroscopy results manifested that the small‐molecule smoke precursors remained almost unchanged with addition of ferrocene. Conclusively, the smoke suppression mechanism with ferrocene predominantly originated from the intensive thermal oxidation of smoke intermediates, which opened a viable route for excellent smoke suppression design.  相似文献   

2.
Flame retardant expandable polystyrene (EPS) foams were prepared by coating method. Red phosphorus (RP) and expandable graphite (EG) were chosen as the flame retardants to be coated on the surface of expanded PS beads. By the presence of 33 phr RP/EG with a mass ratio of 1:1, the limiting oxygen index of EPS foam could reach up to 26.9%, with V-0 rating obtained in UL-94 test. The peak heat release rate could also decrease to 180.67 kW/m2, which was 72.9% lower than that of neat EPS sample. Thermogravimetric analysis revealed an obvious increase of thermal stability and residue char amount by the presence of RP and EG. From the observation and analysis of char residue, it could be proposed that there existed a significant synergistic effect between RP and EG. RP could be oxidized and further react with graphite by the presence of oxygen at high temperature, forming isolated char layer and releasing nonflammable gases. Moreover, P radicals were generated at high temperature and could capture the radicals formed during the combustion of polystyrene and eliminate the burning chain reactions.  相似文献   

3.
介绍了各类阻燃剂(如氢氧化铝、氢氧化镁、锑系、磷系、硼系、钼系)的性能及阻燃机理,并对软质PVC材料的阻燃抑烟性能进行了实验。结果表明:经偶联剂处理过的阻燃剂,由于增强了其与基体的界面结合力。从而使其力学性能得到提高;三氧化钼的用量对聚合物的阻燃效果影响不明显,而随着硼酸锌和三氧化二锑用量的增加,其阻燃效果越来越好。  相似文献   

4.
Urea formaldehyde resin (UF) was modified by introducing melamine during the condensation in order to reduce the amount of free formaldehyde and increase the solid content. The melamine modified UF (MUF) was firstly mixed with intumescent flame retardant (IFR) and then coated on the surface of pre‐expanded polystyrene (PS) particles to prepare flame retardant expandable PS (EPS) foams. The flammability of EPS foam samples was characterized by limiting oxygen index (LOI), UL‐94 vertical burning and cone calorimeter tests, and the results indicated that the peak heat release rate was significantly reduced from 406 to 49 kW/m2 and LOI value could reach 36.3 with V‐0 rating in UL‐94 test after coated with IFR. The smoke density test indicated that the maximum smoke density was decreased by the addition of IFR. Thermal analysis suggested that the thermal stability and char formation were significantly improved by the presence of coated flame retardants. The residual char observation revealed that MUF and IFR were beneficial to form integrated char layers with hollow stents, which could be the main reason for the improvement of flame retardant properties. The mechanical properties of flame retardant EPS foams can still meet the standard requirements for industrial applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44423.  相似文献   

5.
Expandable polystyrene (EPS) particle foams were prepared in three major steps to investigate their mechanical, thermal, and fire behavior on their degree of fusion. Bending strength was found to increase progressively, whereas compressive stress was found to increase linearly with the degree of fusion of EPS particle foams. Although at low degree of fusion the flame heights, B2 was found to decrease, it remained constant at high degree of fusion. Optical microscopic method appeared to be more reliable than pneumatic method in the determination of degree of fusion over the whole range of EPS particle foams investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Polyurethane-imide (PUI) composite foams with expandable graphite (EG) of different sizes were prepared by a polyimide prepolymer method. EG particles were treated with a silane coupling agent to improve compatibility with the foam. The effect of EG particle size on cell morphology, thermal degradation, flame-resistance and mechanical properties of PUI foams was investigated. Results showed that the mean cellular diameter of foams with EG particle was much higher than that of foams with surface-modified EG particle at the same filler loading. When filler particle diameter increased from 20 to 90 μm, the compressive strength, density and closed-cell ratio of foams increased, and then decreased when filler particle diameter further increased from 90 to 150 μm. Thermal stability of foams increased with the increasing filler particle diameter from 20 to 50 μm, and decreased with the increasing filler particle diameter from 50 to 90 μm. The limited oxygen index (LOI) value of foams with surface-modified EG increased from 24.8% to 32.1% when EG particle diameter was below 90 μm. Foams with surface-modified EG exhibited enhanced mechanical properties, thermal stability and flame resistance than foams with neat EG at the same loading.  相似文献   

7.
FeOOH/Sb2O3对PVC共混物的阻燃消烟作用   总被引:1,自引:1,他引:0  
分析了铁化物/锑化物的阻燃消烟作用。实验结果表明,锑化物和铁化物在ABS/PVC共混物中,可以增加共混物的阻燃能力,同时发现两种金属氧化物在减少高分子燃烧时的发烟量方面有协同作用。在共混物燃烧过程中,对增加烧焦物的形成有促进作用。  相似文献   

8.
Melamine–formaldehyde resin was modified by ethylene glycol to decrease the amount of free formaldehyde and extend the storage time. The modified resin (EMF) was further used to prepare microencapsulated ammonium polyphosphate (MCAPP). The structures of both EMF and MCAPP were well characterized. Afterward, EMF and MCAPP were mixed and coated on the surface of pre‐expanded polystyrene particles to prepare flame‐retardant expandable polystyrene foams (EPS). Both water resistance and impact strength were enhanced by the presence of MCAPP, and the flammability of the samples was also significantly improved. For the sample containing 75 phr MCAPP, the limiting oxygen index value was increased to 31.4% with a V‐0 rating in the UL‐94 vertical burning test. Cone calorimeter tests showed that the peak heat release rate of the sample declined sharply to 172.7 kW/m2, which is 81.6% lower than that of neat EPS. The smoke production of EPS foams during combustion was suppressed by the presence of MCAPP, and the thermal stability was also improved. Scanning electron microscopy showed that the char layer of the flame‐retardant sample after combustion became compact with negligible voids or cracks, which could further form an isolation barrier to prevent both heat and flame transfer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46471.  相似文献   

9.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   

10.
为了研究纳米粒子几何结构对膨胀型防火涂料阻燃和抑烟性能的影响,以聚磷酸铵(APP)-季戊四醇(PER)-三聚氰胺(MEL)-硼酸三聚氰胺(MB)为阻燃体系,硅丙乳液为成膜物质,分别添加球形纳米二氧化硅(Si O2)、经硅烷偶联剂KH560改性的管状碳纳米管(KH560–CNT)和片状水滑石(LDH)制备了3种水性膨胀型防火涂料。采用小室法、隧道法及模拟大板法研究了涂层的防火阻燃性能,再结合热重分析、扫描电镜分析和能谱分析,考察了涂层的热解性能和炭层结构。结果表明,球形Si O2和片状LDH能有效增强防火涂料的阻燃和抑烟性能,表现出较好的协效作用;管状KH560–CNT则会恶化防火涂料的阻燃和抑烟性能,表现出对抗作用。当纳米填料的质量分数为0.5%时,片状LDH表现出最优的协效作用,火焰传播比值为12.5,烟密度等级为14.1%。这是因为它能促进涂层在燃烧过程中形成更多的含磷和含硼交联结构,有效增强了炭层的致密性、连续性和隔热性能。  相似文献   

11.
This article presents synthesis and mechanical characterization of carbon nanotube (CNT)‐reinforced syntactic foams. Following a dispersion approach (comprising ultrasonic, calendering, and vacuum centrifugal mixing), single‐ and multi‐walled functionalized CNTs (FCNTs) were incorporated into two foam composites containing various commercially available microballoon grades (S38HS, S60HS, and H50 from 3M). The FCNT‐reinforced composites were tested for compressive strength and apparent shear strength before and after hot/wet conditioning. The results showed that the FCNT‐reinforced composites' mechanical properties depended on the vacuum pressure used during processing. Compared with pristine and commercially available syntactic foam (EC‐3500 from 3M), the FCNT‐reinforced composites processed at high vacuum (0.2 kPa) showed significant increase in compressive strength and apparent shear strength before and after hot/wet conditioning. Dynamic mechanical analysis showed an increase of about 22°C in glass transition temperature for composites processed at high vacuum with 0.5 wt % FCNT and 45 wt % S38HS–5 wt % S60HS microballoons. Thermogravimetric analysis indicated water absorption and lower decomposition temperature for the FCNT‐reinforced composite mixed at atmospheric pressure, whereas no significant change was observed for the compound processed at high vacuum. Fracture analysis showed matrix failure for the composite processed at high vacuum and microballoon crushing for the composite mixed at atmospheric pressure. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Polystyrene (PS) foam materials are lightweight, but suffer from poor compressive strength and heat resistance, among other problems, which limit their application. Herein, a method for preparing PS foam with high compressive strength and high heat resistance using supercritical CO2 is proposed. PS/polyphenylene oxide (PPO) blends were prepared using a corotating intermeshing twin-screw extruder. The results showed that PPO exhibited excellent molecular-level compatibility with PS, which substantially improved mechanical properties and heat resistance of PS. Foam samples of PS/PPO blends with the same expansion ratio were prepared via batch foaming experiments, and the compressive strength of different foams was determined at different temperatures. At room temperature, the compressive strength of the PS/PPO-30% foam increased by 173% compared with pure PS foam. As the testing temperature increased from 30 to 120°C, the compressive strength of pure PS foams decreased rapidly. Nevertheless, PS/PPO foams maintained high compressive strength at high temperatures.  相似文献   

13.
The smoke production behaviour of epoxy film former and the synergistic smoke suppression effect of epoxy cross-linked structure and ferrocene (FC) on epoxy-based intumescent flame-retardant (IFR-EP) coating have been investigated. The results show that the cross-linked structure of epoxy/polyamide resin can not only effectively enhance thermal stability and suppress smoke in the early combustion stage, but also reduce the production of toxic and flammable gases and promote the production of non-flammable gases. On the other hand, the FC can suppress smoke by radical reactions in the early combustion stage and promote the production of denser residue char. Moreover, the FC can also effectively reduce the total smoke rate in the whole combustion process.  相似文献   

14.
Polypropylene (PP) was melt blended with a new mono molecular intumescent flame retardant, melamine salt of pentaerythritol phosphate halloysite (MPPH) to enhance its thermal stability, flame retardancy, and smoke suppression properties. The structure of MPPH was elucidated by Fourier transform infrared (FTIR), 1H NMR, X-ray diffraction (XRD), and energy dispersive X-ray (EDX) analysis. PP composites results showed that MPPH increased the thermal stability of PP at high temperatures in all PP composites. The horizontal flammability test (UL94H) showed that MPPH stopped flame propagation in PP composites. Vertical burning rate test (UL94V) revealed that PP composites can attain V0 rating at loading levels 25, 30, and 35 wt.% of MPPH. Limiting oxygen index (LOI) data indicated that adding 20, 25, 30, and 35 wt.% of MPPH to PP increased the LOI value of PP (19.2%) to 27.1%, 32.5%, 35.4%, and 38.7%. MPPH succeeded in reducing the maximum specific optical density (Dsmax), mass specific optical density (MOD), and rate of smoke generation during the first 4 min (VOF4) of PP composites compared to PP alone. FTIR gas analyzer results revealed that MPPH decreased the emission of CO and CO2 in the gas phase during the combustion process. Digital photos and scanning electron microscope (SEM) images of char residues remained after the smoke density test revealed that MPPH succeeded in forming a cellular and cohesive char layer on the PP surface. The new data is expected to increase the use of PP in rigid packaging applications.  相似文献   

15.
Currently, the flame-retardant modification of polybutylene succinate (PBS) is mainly focused on improving flame-retardant efficiency, ignoring the negative impact of the smoke produced by combustion on the human respiratory tract. To address this problem, PBS composites were prepared by melt blending method in this study. The effect of boron nitride-grafted DOPO flame retardant (BNNS@DOPA) on flame retardancy and smoke suppression of PBS composites was investigated. Incorporating 3% BNNS@DOPA into PBS composites results in a 90% improvement in thermal conductivity. This resulted in a reduction of the peak heat release rate, total heat release rate, and actual smoke rate to 453.7 kW m−2, 86.3 MJ m−2, and 1035.9 m2, respectively, compared with pure PBS. The latter indicated a decrease of 34.0%, 37.6%, and 51.2%, respectively. Furthermore, the ignition time was extended by 45 s and the limiting oxygen index value increased by 12.5%. This functionalization approach presents a new way to study PBS flame retardancy improvement, consequently boosting its application in fire safety for polymer materials.  相似文献   

16.
聚氯乙烯阻燃抑烟研究进展   总被引:1,自引:0,他引:1  
综述了近年来PVC的发烟机理,无机和有机阻燃抑烟剂改性PVC的研究进展。  相似文献   

17.
The article reported the flame‐retardant and the mechanical properties of expandable graphite (EG), an intumescent type, and decabrominated dipheny ethane (DBDPE), a gas‐phase type of flame‐retardant‐containing high‐density rigid polyurethane foams (RPUF) with a constant density of 0.5g/cm3. The results indicated that both EG and DBDPE could effectively interdict the burning of RPUF, besides, the EG exhibited more effective flame retardancy than the DBDPE. When the flame‐retardant loadings were 20 wt %, the LOI value of DBDPE‐filled RPUF increased to 33 vol %, while, surprisingly, the EG‐filled RPUF reached 41 vol %. Unfortunately, when they were both simultaneously added into RPUF, there was not any flame‐retardant synergistic effect. Although EG had outstanding flame retardancy, the compressive strength and modulus of 20 wt % EG‐filled RPUF dropped to only 9.1MPa and 229.7MPa respectively, which were lower than those of DBDPE (12.4 MPa and 246.8 MPa). The phenomena were ascribed to the different flame‐retardant mechanisms of EG and DBDPE, which were verified by scanning electronic microscope (SEM) observation of the burned surfaces. Besides, the dynamical mechanical analysis (DMA) demonstrated that the additions of EG and DBDPE made the glass transition temperature shift to the high temperatures, and the EG‐filled RPUF had the higher storage modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
The influence of in situ synthesized nanoparticles on the microstructure and compression properties of polymer foams during supercritical carbon dioxide foaming has been investigated. The in situ synthesized Ag nanoparticles were chosen to be heterogeneous nucleating agent. For achieving our target, the influence of the nanoparticle size on the cell structure and the nucleation mechanism has been detailed discussed firstly. The results show that the in situ synthesized nanoparticles can be heterogeneous nucleation agent to improve the cell density of the PMMA‐based foams. The particle size is able to reduce to the critical size of heterogeneous nucleation agent and, then, can highly improve the cell density of the foams. The Ag nanoparticles with average size of 2.2 nm led to 85% increase in compressive strength of the foams. The improvement of strength of the polymer matrix and the microstructure of the foams can lead to the remarkable increase in the mechanical properties of the foams. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44629.  相似文献   

19.
Aqueous film-forming foams (AFFFs) are an important for fire extinguishing, and their key ingredient is fluorinated surfactant. In recent years, traditional long-chain fluorinated surfactants have been banned by most countries because of their persistence, bio-accumulation and toxicity. Therefore, increased attention has been paid to the research and development of short-chain fluorinated surfactants. As is well known, the introduction of hydrophilic or hydrophobic groups in a surfactant affects its surface activity, and therefore, the fire extinguishing performance of AFFFs. In this work, a series of short-chain fluorosurfactant-based AFFFs with different hydrophobic chain lengths were prepared. The physicochemical performance of mixed systems (fluorinated surfactant plus sodium hexanesulfonate), including surface activity, spreading ability, foam expansion, drainage time, and the fire extinguishing and burn-back performance of AFFFs were studied. The results show that the critical micelle concentration (CMC) and the surface tension (γCMC) at the CMC of mixed systems at 25°C are lower than 7.68 mmol/L and 16.51 mN/m, respectively. For mixed systems, the average spreading rate is more than 1.09 cm/s, the foam expansion is over 7.1, and the drainage time is greater than 3.28 min. The fire extinguishing time of AFFFs on fuels is less than 51 s while the burn-back time is more than 15.18 min. The results imply a potential application prospect of the short-chain fluorinated surfactants in AFFFs.  相似文献   

20.
The fire performance and mechanical properties of an acrylonitrile‐butadiene‐styrene (ABS) copolymer compounded with different expandable graphites (EG) and fire retardants were studied by using the limiting oxygen index test, the UL‐94 test, a mechanical test, and a thermogravimetric analysis. The ground EG treated with phosphoric acid and silane could have the great increase of the volume expansion ratio. The addition of the treated EG in ABS significantly enhances the fire performance but decreases the impact strength of ABS. ABS with the treated EG has a much higher impact strength than with the as‐received EG because of the smaller particle size of the treated EG and the better adhesion between the ABS and the treated EG. The addition of modified ammonium polyphosphate or decabromodiphenyl oxide/antimony trioxide can considerably improve the fire performance of ABS/treated EG composites because of a synergistic effect. The V‐0 grade (UL‐94) ABS composite with the limiting oxygen index of 32.5 can be obtained by adding small amounts of the treated EG and modified ammonium polyphosphate into ABS. Thermogravimetric analysis results indicate that the initial vapor release temperatures and the weight loss rates of ABS/EG composites are closely related to their fire performance and affected by the fire retardant used. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号