首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
黄智华  薛滨  逄勇 《第四纪研究》2008,28(4):674-682
选择位于长江下游的固城湖流域作为研究区域,基于分布式流域水文模型SWAT,采用数值模拟的手段,反演了1951~2000年流域农业非点源氮、磷的输移规律。模拟结果与实测值的一致性反映了模型的良好模拟能力。比较两个时段的模拟结果发现,1981~2000年,流域农业非点源氮、磷年平均浓度和输移量分别为:总氮0.82mg/L和411.88×103kg/a,总磷0.084mg/L和43.04×103kg/a;远高于1951~1960年的氮、磷年平均浓度和输移量分别为:总氮0.22mg/L和49.55×103kg/a,总磷0.036mg/L和7.67×103kg/a。模拟主要反映了流域下垫面条件和农作物耕作模式对农业非点源氮、磷浓度及输移量的影响。  相似文献   

2.
多水塘系统是农业流域常见的小型水利工程,空间交错的沟塘结构导致其水文连通过程复杂多变,对流域营养盐截源控污影响显著。为强化多水塘系统水文连通对磷输移影响的认知,以多水塘系统及其水文连通的定义内涵为切入点,归纳了多水塘水文连通性评估方法;基于景观格局、水文过程和生物地球化学过程聚焦多水塘系统对磷输移的调控作用;阐明了水文连通变化通过驱动干湿交替对磷输移环境以及通过调节水分滞留时间对磷输移通量的影响。指出多水塘系统水文连通变化的驱动机制、沟塘滞留效率的尺度扩展、定量模拟和优化调控是未来多水塘系统环境效应研究的重要方向,以期为保障多水塘水质改善功能提供理论依据。  相似文献   

3.
洪湖流域自然农耕条件下营养盐沉积输移演化模拟研究   总被引:7,自引:0,他引:7  
桂峰  于革  赖格英 《沉积学报》2006,24(3):333-338
选择洪湖流域为研究区域,应用分布式流域模型SWAT,从长期演化的角度出发,对流域营养盐输移演化进行模拟。模拟的边界条件设置为自然农耕背景,探讨百年尺度洪湖流域营养盐输移演变规律。对TN、TP的模拟分汛期与非汛期两个时间段,分别进行200年的模拟运算。模拟结果显示模型可以很好的体现流域营养盐沉积输移演变的基本特征。TN、TP浓度变化有明显的季节特征,随时间变化特征与沉积记录相一致。模拟结果的时间序列分析,TN、TP显示出不同的变化趋势。流域模型为百年时间尺度上流域营养盐沉积输移演化的自然趋势研究,提供了很好评价依据。  相似文献   

4.
河流碳输移与陆地侵蚀-沉积过程关系的研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
河流碳输移与陆地侵蚀-沉积过程紧密相关。首先就机械和化学风化两种不同的陆地侵蚀机制在提供河流碳源方面所发挥的不同作用作了详细论述,并比较了季风流域和非季风流域间河流碳输移在通量及性质上的差异。之后对陆地碳沉积机制进行了归纳,指出了包括大坝截留,河漫滩、河口-近岸带沉积及陆地碳沉降等几种可能的陆源碳踪迹。陆地环境的截留效应相对于侵蚀尚不太清楚,今后应加强对陆地碳沉积的研究,进一步明确各种碳沉积的作用机制及其对全球陆地碳汇的贡献量。此外,人类活动对陆地侵蚀-沉积过程及河流碳循环所产生的直接或间接的影响也有待于今后继续深入探索。  相似文献   

5.
洪湖流域传统农业条件下营养盐输移模拟研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
桂峰  于革 《第四纪研究》2006,26(5):849-856
文章选择位于长江中游的洪湖流域作为研究对象,应用流域分布式水文模型SWAT,探讨传统农业条件下流域营养盐输移的规律。模拟时段选择为建国初期的1951~1960年,模拟的边界条件设置为自然地形、土壤、传统农业生产和土地利用方式,其中土壤资料包括营养盐(N和P)、有机质含量、粒径等理化参数等。根据流域汇水范围的变化,模拟分汛期与非汛期两个时间段进行。通过对模型参数率定和调试,水文模拟结果与实测值有较好的吻合程度,由此进行营养盐输出模拟。模拟结果显示,传统农业条件下流域营养盐输出,TN和TP浓度变化有明显的季节特征,体现了耕作制度对营养盐浓度的影响; 同时,该时段营养盐浓度相比较自然条件下有了很大的改变,体现了人类活动对流域营养盐输移的影响,主要是土地利用类型变化和湖泊水域面积的缩小。  相似文献   

6.
城市地表径流-灰尘-污染物输移研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
城市地表"径流-灰尘-污染物"作为一个三相介质系统,相互作用机理十分复杂。分别从城市地表灰尘颗粒对不同种类污染物的吸附效应及时空分布规律、地表(坡面)降雨径流特性及过程模拟、地表径流-灰尘-污染物协同输移与削减等方面,总结与分析了现有的研究进展。从本质上来看,城市地表灰尘可视为由不同粒径泥沙颗粒组成的综合体,有必要基于泥沙运动力学理论加强对地表径流中灰尘颗粒运动规律的研究,并以灰尘颗粒对不同污染物的吸附、沉淀作用为纽带,探讨"径流-灰尘-污染物"的协同输移与削减机制。其中,如何有效扩展城市调查样本容量,比较研究不同下垫面径流动力特性,并从径流能量或功率角度出发,研究不同粒径灰尘颗粒的分组起动与输移规律,并建立在径流输送过程中的挟沙力方程,将是今后需要深入研究的问题。  相似文献   

7.
城市地表"径流-灰尘-污染物"作为一个三相介质系统,相互作用机理十分复杂。分别从城市地表灰尘颗粒对不同种类污染物的吸附效应及时空分布规律、地表(坡面)降雨径流特性及过程模拟、地表径流-灰尘-污染物协同输移与削减等方面,总结与分析了现有的研究进展。从本质上来看,城市地表灰尘可视为由不同粒径泥沙颗粒组成的综合体,有必要基于泥沙运动力学理论加强对地表径流中灰尘颗粒运动规律的研究,并以灰尘颗粒对不同污染物的吸附、沉淀作用为纽带,探讨"径流-灰尘-污染物"的协同输移与削减机制。其中,如何有效扩展城市调查样本容量,比较研究不同下垫面径流动力特性,并从径流能量或功率角度出发,研究不同粒径灰尘颗粒的分组起动与输移规律,并建立在径流输送过程中的挟沙力方程,将是今后需要深入研究的问题。  相似文献   

8.
水土保持措施对流域泥沙输移比的影响   总被引:17,自引:0,他引:17       下载免费PDF全文
以黄土高原无定河流域为例研究了水土保持措施对流域泥沙输移比的影响。水土保持措施极大地改变了流域泥沙的侵蚀、输移和堆积过程,因而改变了流域的泥沙收支关系。在天然状况下,无定河流域的泥沙输移比接近10。20世纪60年代后流域内大规模地展开水土保持工作以来,泥沙输移比急剧下降为0.2~0.4。泥沙输移比的变化,主要是由于流域内人为沉积汇的形成所致。这种人为沉积汇表现为水库、淤地坝的拦沙作用,导致了泥沙输移比大幅度减小。在目前状况下,人工沉积汇的拦沙作用相当于坡面措施减蚀作用的2 4~6.3倍,表明坡面治理措施的有效性尚有待提高,并亟待在生态环境建设中予以加强。  相似文献   

9.
为研究淤泥质河口的水沙运动规律,建立了用于模拟淤泥质河口水沙运动的二维数学模型。该模型采用基于无结构三角网格下的有限体积法对方程组进行离散,结合Roe-MUSCL方法及时间方向的预测-校正格式,使模型在时空方向具有二阶计算精度。模型中分别采用不同方法计算粘性和非粘性泥沙的输移源项,并引入粘性泥沙的起动流速和冲刷率计算公式。采用已有的概化水槽试验数据对模型进行了初步验证。然后模拟了1995年10月小潮及大潮期间海河口的潮流运动与泥沙输移过程,计算得到的潮位、潮流速及含沙量过程与实测过程符合较好,结果表明模型能够用来模拟淤泥质河口粘性和非粘性泥沙的不平衡输移过程。同时还比较了泥沙输移源项的不同处理方式对计算结果的影响,计算表明在淤泥质河口水沙运动数学模型中必须同时考虑粘性和非粘性泥沙的输移。  相似文献   

10.
颗粒态氮磷负荷模型研究   总被引:11,自引:0,他引:11       下载免费PDF全文
为研究妫水河流域的颗粒态氮磷非点源污染来源,以控制非点源污染,在官厅水库周围进行了野外人工降雨试验。试验数据表明,氮磷输移率与产沙率具有很好的相关性,颗粒态氮、磷的平均相关系数分别为0.9594和0.9772。建立了新的颗粒态氮磷负荷模型,其中富集系数等于泥沙中总氮总磷百分含量与土壤中百分含量之比。根据妫水河流域的土壤图、土地利用图及数字高程模型,应用新的模型研究了妫水河流域颗粒态氮磷污染负荷的空间分布。结果表明,颗粒态氮磷主要来自地表植被覆盖差的丘陵和山地。  相似文献   

11.
A number of major European rivers (especially the Rhine) have a prevailing influence on the nutrient cycling of most Dutch estuaries. Owing to the increased loading of the estuaries with nitrogen and phosphorus compounds, effects of eutrophication on the biological communities are most evident in the tidal Western Wadden Sea and in a nontidal brackish lagoon, Veerse Meer. Whether the relation between changed nutrient loadings and changed biomass and production of primary and secondary producers in the turbid tidal Dutch ecosystems should be considered as a causal relation is questionable. The very widespread practice of lagoon modification confuses the effects of nutrient loading.  相似文献   

12.
Characteristics of Danish estuaries   总被引:2,自引:0,他引:2  
We review various aspects of the structure and functioning of Danish estuaries from data collected by the National Monitoring Program and from information in published sources. We present data on the physical, chemical, and biological characteristics of estuaries in Denmark, we evaluate the functioning of these systems as filters and transformers of nutrients and we evaluate the outlook for Danish estuaries in the future. Danish estuarine systems are for the most part shallow (<3 m deep), have short residence times, and tend to be heavily loaded with nutrients primarily from agricultural sources. Total average loads from land per unit watershed area are 112 kg P km?2 yr?1 and 2,400 kg N km?2 yr?1 during the period 1989–1995. The total phosphorus (TP) load in estuaries has been significantly reduced over the last decade, following implementation of the 1987 Action Plan for the Aquatic Environment (Vandmiljøplan in Danish) that prescribed that nitrogen loads to the total aquatic environment should be reduced by 50% and phosphorus loads by 80%. Reductions in the total nitrogen (TN) load have been more modest. Nutrient loading is one of the primary determinants of estuarine nutrient concentration with 70% of the annual variation in TN concentration and 55% of the annual variation in TP concentration explained by variation in the load. Many Danish estuaries have rich communities of macrophytes and benthic filter feeders, such asMytlis edulis andCiona intestinalis, that can control water column chlorophyll concentrations by their filter feeding activities. Many of the estuaries experience hypoxia and anoxia, especially during warm and calm summer months. Further reductions in nutrient loading are expected following implementation of the Action Plan for the Aquatic Environment II, with predicted improvements in oxygen concentrations and in the functioning of these shallow, dynamic estuarine systems.  相似文献   

13.
A tool based on simple dilution models is developed to predict potential nutrient concentrations and flushing times for New Zealand estuaries. Potential nutrient concentrations are the concentrations that would occur in the absence of nutrient uptake or losses through biogeochemical processes, and so represent the pressure on a system due to nutrient loading. The dilution modelling approach gives a single time- and space-averaged concentration as a function of flow and nutrient input, with the capability to include seasonal nutrient and flow differences. This tool is intended to be used to identify estuaries likely to be highly sensitive to current nutrient loads based on their physical attributes, or to quickly compare the effects of different land-use scenarios on estuaries. The dilution modelling approach is applied both to a case study of a single New Zealand estuary, and used in a New Zealand-wide assessment of 415 estuaries. For the NZ-wide assessment, annual nutrient loads to each estuary were obtained from a GIS-based land-use model. Comparison with measured data shows that the predicted potential nitrate concentrations are significantly correlated with, but higher than, measured nitrate values from water quality sampling time series. This is consistent with expectations given that the measured concentrations include the effects of nitrogen uptake and loss. The estuary dilution modelling approach is currently incorporated into the GIS-land use model, and is also available as a web-app for assessing eutrophication susceptibility of New Zealand estuaries.  相似文献   

14.
Important parameters of estuarine variability include morphology, flushing times, nutrient loading rates, and wetland: water ratios. This variability both reflects and disguises underlying relationships between the physics and biology of estuaries, which this comparative analysis seeks to reveal, using the Gulf of Mexico (GOM) estuaries as a starting point. A question used to focus this analysis is: are the GOM estuaries unique? The GOM receives the Mississippi River, a uniquely large, world-class river, which dominates the freshwater and nutrient inflows to the GOM continental shelf, whose margins include 35 major estuarine systems. These GOM estuaries have 28% and 41% of the U.S. estuarine wetlands and open water, respectively. Within the GOM, estuarine nitrogen, phosphorus, and suspended matter loading varies over 2 orders of magnitude. Anoxic estuarine events tend to occur in estuaries with relatively slow freshwater turnover and high nitrogen loading. Compared to estuaries from other regions in the U.S., the average GOM estuary is distinguished by shallower depths, faster freshwater flushing time, a higher wetland area:open water area ratio, greater fisheries yield per area wetland, lower tidal range, and higher sediment accumulation rates. The average GOM estuary often, but not always, has a flora and fauna not usually found in most other U.S. estuaries (e.g., manatees and mangroves). Coastal wetland loss in the GOM is extraordinarily high compared to other regions and is causally linked to cultural influences. Variations in nutrient loading and population density are very large among and within estuarine regions. This variation is large enough to demonstrate that there are insufficient systematic differences among these estuarine regions that precludes cross-system analyses. There are no abrupt discontinuities among regions in the fisheries yields per wetland area, tidal amplitude and vegetation range, salt marsh vertical accretion rates and organic accumulations, nitrogen retention, or wetland restoration rates. These results suggest that a comparative analysis emphasizing forcing functions, rather than geographic uniqueness, will lead to significant progress in understanding how all estuaries function, are perturbed, and even how they can be restored.  相似文献   

15.
Populations and metropolitan centers are accumulated in coastal areas around the world. In view of the fact that they are geographically adjacent to coasts and intense anthropogenic activities, increasing global offshore pollution has been an important worldwide concern over the past several decades and has become a very serious problem that needs to be addressed urgently. Due to offshore pollution, various geological disasters occur in high frequency, including intensified erosion and salinization of coastal soils, frequent geological collapses and landslides and increasing seismic activities. Moreover, offshore pollution shows increasingly serious impacts on the topography and geomorphology of offshore and coastal areas, including coastal degradation, retreating coastlines and estuary delta erosion. Offshore sedimentation processes are strongly influenced by the pH changes of terrestrial discharges, and sedimentary dynamics have become extremely acute and complex due to offshore pollution. The seabed topography and hydrodynamic environment determine the fate and transport of pollutants entering offshore regions. Coastal estuaries, port basins and lagoons that have relatively moderate ocean currents and winds are more likely to accumulate pollutants. Offshore regions and undersea canyons can be used as conduits for transporting pollutants from the continent to the seabed. It is particularly noteworthy that the spatial/temporal distribution of species, community structures, and ecological functions in offshore areas have undergone unprecedented changes in recent decades. Due to increasing offshore pollution, the stable succession and development trend of marine ecosystems has been broken. It is thus important to identify and regulate the quantity, composition and transportation of pollutants in offshore regions and their behavior in marine ecosystems. In particular, crucial actions for stabilizing marine ecosystems, including increasing species and biodiversity, should be implemented to enhance their anti-interference capabilities. This review provides an overview of the current situation of offshore pollution, as well as major trends of pollutant fate and transportation from continent to marine ecosystems, transformation of pollutants in sediments, and their bioaccumulation and diffusion. This study retrospectively reviews the long-term geological evolution of offshore pollution from the perspective of marine geology, and analyses their long-term potential impacts on marine ecosystems. Due to ecological risks associated with pollutants released from offshore sediments, more research on the influence of global offshore pollution based on marine geology is undoubtedly needed.  相似文献   

16.
Understanding whether nutrient availability and grazing by consumers can control macroalgal growth is important to mitigate blooms. To assess the effect of long-term nitrogen loading on macroalgae, we ran a field experiment in which we measured growth of green and red macroalgae in estuaries where loads and eutrophication status differed. The relative abundances of consumers differed among estuaries with more grazers in non-eutrophied estuaries, an important interaction of bottom-up and top-down controls. In the estuary with the lowest nitrogen load, grazers controlled green macroalgal growth, but in higher nitrogen-loaded estuaries, where grazing was lower, growth of green macroalgae overwhelmed potential grazer control. The red macroalga was not controlled by grazers, even in the estuary where grazing pressure was highest. In the low-loaded estuary, invertebrate predators exerted top-down control over grazers, but predation effects did not cascade to macroalgae. Bottom-up mechanisms dominated control of macroalgae through an interaction of direct stimulation of growth and indirect alteration of consumer abundances, and thus, long-term nutrient regimes are likely determining potential for bloom formation in Waquoit Bay.  相似文献   

17.
As a new type of pollutants in the marine environment,microplastics have attracted increasing attention from scientific researchers and environmental protection workers in China and abroad.However,for the microplastic pollution in sea areas in China,there are a very limited number of studies on its current status and few reviews of research on the microplastics.This paper reviews the surveys and researches of microplastics in the Bohai Sea,the Yellow Sea,the East China Sea,the South China Sea,and main estuaries in China carried out in recent years and proposes an outlook for future work,aiming to provide research suggestions and solutions for ecological protection against microplastic pollution in sea areas in China.Previous studies have shown that microplastics are widely distributed in water bodies and sediments in sea areas and major estuaries in China.The Pearl River Estuary,in the South China Sea suffers the most serious microplastic pollution,followed by the Bohai Sea.In contrast,the microplastic pollution in the Yellow Sea and the East China Sea is comparatively slight.Microplastics in sea areas in China are mainly fibrous and are concentrated in offshore areas with developed industry and a dense population(especially around estuaries and bays).In addition,they are widely affected by human activities,such as shipping,aquaculture,industry,and sewage discharge.Here the authors suggest unifying measurement units and research methods and developing related standard systems to carry out researches related to microplastics.Furthermore,this paper also suggests further deepening researches on both the source-sink process of microplastics and nanoscale microplastics while enhancing the development and implementation of related policies,aiming to promote researches and control of microplastics in sea areas in China.  相似文献   

18.
Rapidly growing human populations have caused heavy modifications to the watersheds of many Mediterranean climate estuaries, subjecting them to excessive nutrient enrichment and harmful macroalgal blooms. Despite these impacts, comprehensive studies in these systems are rare and comparisons between systems are lacking. We surveyed five southern California estuaries that ranged in size from 93 to 1,000 ha and incorporated differing land usages and watershed sizes. We sampled environmental variables (sediment redox potential, organic content, total nitrogen and total phosphorus, water column nitrate, ammonium, and salinity) and macroalgal cover and biomass quarterly at three locations within each estuary over 15 months to compare spatial and wet vs. dry season patterns. Maximum mean water column nitrate concentration across all estuaries ranged from 47 to 1,700 μM, showing that all estuaries were highly enriched with nitrogen, at least at some times. Mean macroalgal biomass ranged from 0 to 1,500 g wet wt m?2. However, neither nutrient concentrations nor algal biomass showed consistent seasonal patterns as maximum values occurred in different seasons in different estuaries. Three-dimensional principal components analysis followed by regression analyses confirmed that macroalgal abundance was not directly related to water or sediment N concentrations. Rather each of these southern California estuaries showed individual patterns in all measured variables, which were most likely induced by a suite of physical modifications unique to each system and its watershed.  相似文献   

19.
Macroalgal biomass and competitive interactions among primary producers in coastal ecosystems may be controlled by bottom-up processes such as nutrient supply and top-down processes such as grazing, as well as other environmental factors. To determine the relative importance of bottom-up and top-down processes under different nutrient loading conditions, we estimated potential amphipod and isopod grazer impact on a dominant macroalgal species in three estuaries in Waquoit Bay, Cape Cod, Massachusetts, that are subject to different nitrogen loading rates. We calculated growth increases and grazing losses in each estuary based on monthly benthic survey data of macrophyte biomass and herbivore abundance, field grazing rates of amphipods (Microdeutopus gryllotalpa andCymadusa compta) and an isopod (Idotea baltica) on the preferred and most abundant macroalga (Cladophora vagabunda) and laboratory grazing rates for the remaining species, and in situ macroalgal growth rates. As nitrogen loading rates increased, macroalgal biomass increased (3×), eelgrass (Zostera marina) was lost, and herbivore abundance decreased (1/4×). Grazing rates increased with relative size of grazer (I. baltica > C. compta > M. gryllotalpa) and, for two of the three species investigated, were faster on algae from the high-nitrogen estuary in comparison to the low-nitrogen estuary, paralleting the increased macroalgal tissue percent nitrogen with nitrogen load. Macroalgal growth rates increased (2×) with increasing nitrogen loading rate. The comparison between estimated growth increases versus losses ofC. vagabunda biomass to grazing suggested first, that grazers could lower macroalgal biomass in midsummer, but only in estuaries subject to lower nitrogen loads. Second, the impact of grazing decreased as nitrogen loading rate increased as a result of the increased macroalgal growth rates and biomass, plus the diminished abundance of grazers. This study suggests the relative impact of top-down and bottom-up controls on primary producers varies depending on rate of nitrogen loading, and specifically, that the impact of herbivory on macroalgal biomass decreases with increasing nitrogen load to estuaries.  相似文献   

20.
Coastal eutrophication has become one of the main threats to Chinese coastal areas during the last two decades. High nutrient loads from human activities have modified the natural background water quality in coastal water bodies, resulting in a range of undesirable effects. There is a need to assess the eutrophic level in coastal systems and to identify the extent of this impact to guide development of appropriate management efforts. Traditional Chinese assessment methods are discussed and compared with other currently-used methods, such as the Oslo-Paris Convention for the Protection of the North Sea (OSPAR) Comprehensive Procedure and Assessment of Estuarine Trophic Status (ASSETS). The ASSETS method and two Chinese methods were tested on two Chinese systems: the Changjiang (Yangtze) Estuary and Jiaozhou Bay. ASSETS is process based, and uses a pressure-state-response model based on three main indices: Influencing Factors, Overall Eutrophic Condition, and Future Outlook. The traditional methods are based on a nutrient index. ASSETS was successfully applied to both systems, classifying the Changjiang Estuary as Bad (high eutrophication) and Jiaozhou Bay as High (low eutrophication). The traditional methods led to ambiguous results, particularly for Jiaozhou Bay, due to the high spatial variability of data and a failure to assess the role of shellfish aquaculture in nutrient control. An overview of the Chinese coastal zone identifies 50 estuaries and bays that should form part of a national assessment. A comparison of methods and results suggests that ASSETS is a promising tool for evaluating the eutrophication status of these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号