首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To overcome the issues of poor toughness and low dielectric constant associated with PLA, which limit its application in the electronics industry, we introduced an insulating polydopamine (PDA) layer on the surface of core-shell nickel-coated carbon nanotube (Ni-CNT) and nickel-coated graphene (Ni-GRA). Through a double-layer structural design approach, we successfully prepared polylactic acid (PLA)/polycaprolactone (PCL) blends that exhibit high dielectric constant (ε’) and low dielectric loss (tanδ). This innovative design led to impressive impact strengths of 29.41 kJ/m2 for PLA/PCL/4Ni-GRAs and 22.54 kJ/m2 for PLA/PCL/4Ni-CNTs. PDA enhanced the interfacial interactions between the filler and matrix, which improved the dispersion of Ni-CNTs and Ni-GRAs and contributed to the mechanical properties of the PLA/PCL blends. Simultaneously, PLA/PCL/4Ni-CNTs and PLA/PCL/4Ni-GRAs exhibited commendable integrated dielectric properties. The PDA@fillers form microcapacitors with the polymer matrix and the conductive Ni layer enhances ε’ and reduces the conductivity difference between fillers. Furthermore, the insulating PDA layer contributed to improved dispersion, inhibition of charge carrier migration, and reduction in tanδ. At 1000 Hz, the ε′ of PLA/PCL/4Ni-CNTs and PLA/PCL/4Ni-GRAs increased to 88.3 and 124.6, respectively, and the tanδ values remained below 1, indicating minimal dielectric loss. This provides a promising direction for eco-friendly materials with enhanced dielectric and mechanical properties.  相似文献   

2.
In this work, several samples based on poly(lactic) acid (PLA)/butadiene rubber (BR) blend with and without nanoclay (Cloisite 30B) were prepared using an internal mixer. Various methods were used to characterize the samples, including scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD), rheometric mechanical spectrometer, stress–strain, and impact strength tests. The SEM results showed the droplet-matrix morphology for all prepared samples. With the incorporation of nanoclay, the mean diameter of the BR droplets generated within the PLA matrix decreased. AFM test revealed the placement of nanoparticles in the PLA phase, which was consistent with the thermodynamic prediction of their location. The XRD test showed that the interlayer space of nanoclay expanded by 86% due to the diffusion of polymer chains between them. In the rheology test, this resulted in an increment in modulus and viscosity at low frequencies for the nanocomposites compared to the simple blend. The highest elongation at break was observed for the PLA/BR blend containing 10 wt% BR with approximately 40 times its value for the neat PLA, while the impact resistance increased up to three times.  相似文献   

3.
Phase morphology and mechanical properties of the blends of Nylon 6 with scrap poly(vinyl butyral) (PVB) film and poly[styrene-block-(ethylene-co-butene)-block-styrene] (SEBS) have been investigated. Scanning electron microscopic photographs revealed that the spherical PVB particles are finely and uniformly dispersed in the Nylon 6 matrix without changing the shape of the particles. The average particle sizes in all over the blend compositions for Nylon 6/PVB were slightly increased with PVB content, but the dispersed phase is tightly adhered to the matrix phase, with PVB content in the range of 20–35 wt % PVB. Elongation at break and notched Izod impact strength of all the blends were enhanced, which implies good interfacial adhesion. The rubberlike PVB film adhering to the Nylon 6 phase is suggested to give an improved impact strength and toughness. In particular, the optimum PVB content for the best impact strength is found to be in the vicinity of 20–35 wt %, and this composition exhibits better moisture resistance than the other blend compositions. All of the blends up to 35 wt % PVB show higher mechanical properties than those of Nylon 6 blended with conventional impact modifier SEBS. Thus, plasticized PVB film, which is recycled from the process of automobile safety glasses, is applicable as an impact modifier or a toughening agent of Nylon 6. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1531–1540, 1998  相似文献   

4.
In this work, the fabricated polylactic acid (PLA) and hybrid natural fiber (NF) biocomposites via a melt extrusion method were investigated. NFs from locally grown plants were utilized as fillers. Polyethene glycol (PEG) was used as the plasticizer to improve the processability of the PLA. The effect of PLA/NF biocomposite processing was assessed by mechanical characterization (tensile, modulus, strain at break, and impact tests), and thermal properties (thermogravimetric analysis and differential scanning calorimetry [DSC] analysis). The dynamic mechanical analysis (DMA), and thermo-mechanical analysis (TMA) of the samples were also analyzed. The mechanical properties of PLA/NF biocomposites improved as compared with that of PLA. The DMA findings show that the storage modulus and loss modulus exhibited a slight reduction for PLA/NF biocomposites compared with the PLA sample. In opposite, the glass transition temperature (Tg) from DSC thermogram results showed no obvious changes in values compared with the PLA sample. Furthermore, the findings of TMA showed a significant decrease in coefficient of thermal expansion values of PLA/NF biocomposites compared with those of PLA samples. The overall findings from this work indicated that PLA/NF biocomposites have the potential to make novel biocomposites and suitable for further application especially in biomedical applications due to its good stiffness, tensile strength, and dimensional stability.  相似文献   

5.
In order to improve the foaming performance of pure cellulose acetate (CA), blends were prepared by mixing polylactic acid (PLA) in CA and foamed by supercritical CO2 (ScCO2) in this study. The effect of PLA content (percentage by mass of blend) on structure, thermal properties, rheological properties, foaming properties and mechanical properties of the blends was investigated. The results showed that the addition of PLA destroyed the original hydrogen bonds of CA, while the blends had good crystallization properties. At the same time, compared with pure CA, the glass transition temperature (Tg) of the blends decreased, and the initial decomposition temperature (T0) was reduced from 349.41°C (pure CA) to 334.68°C (CA/20%PLA). In addition, the rheological properties of the blends were improved, and the viscosity was reduced, which was obviously beneficial to foaming process. The pore size and density of the foamed blends both reached the maximum value at 20%PLA. The presence of PLA could degrade the mechanical properties of the blends. However, the overall drop (1.01 KJ/m2) of impact strength of the blends after foaming is much smaller than that before foaming (12.11 KJ/m2), indicating that the improvement of foaming performance was beneficial to improve its impact strength.  相似文献   

6.
Blends of two biocompatible polymers: thermoplastic polyester‐urethane (TPU) and polylactic acid (PLA) were studied. The effect of the blending ratio on blend morphology and properties was examined by running a series of blends from 10 to 80 wt % of PLA. Increasing TPU concentration in the blends lowered the glass transition and melting point of PLA indicating that the components were compatible and partially miscible. The blends with 10–40 wt % PLA are hard, reinforced elastomers, while those with 60–80 wt % PLA are tough plastics. Cocontinuous morphology was suggested in samples with 40 and 50 wt % PLA. Inversion points between 30 and 40 wt % PLA (from globular phase is dispersed in the matrix to a cocontinuous morphology) and between 50 and 60 wt % PLA (a transition from cocontinuous to TPU dispersed in the PLA matrix) were observed. Elastomers with higher PLA content and intermediate morphology displayed a combination of high tensile strength, hardness, relatively high elongation and modulus. New materials have potential applications in the medical field. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41104.  相似文献   

7.
Bio‐based continuous fibers were processed from polylactic acid (PLA) and cellulose nanowhiskers (CNWs) by melt spinning. Melt compounding of master batches of PLA with 10 wt % CNWs and pure PLA was carried out using a twin‐screw extruder in which compounded pellets containing 1 and 3 wt % of CNWs were generated for subsequent melt spinning. The microscopy studies showed that the fiber diameters were in the range of 90‐95 µm, and an increased surface roughness and aggregations in the fibers containing CNWs could be detected. The addition of the CNWs restricted the drawability of the fibers to a factor of 2 and did not affect the fiber stiffness or strength, but resulted in a significantly lower strain and slightly increased crystallinity. Furthermore, CNWs increased the thermal stability, creep resistance and reduction in thermal shrinkage of PLA fibers, possibly indicating a restriction of the polymer chain mobility due to the nanoscale additives. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Dynamic mechanical analysis and differential scanning calorimetry were used to investigate the relaxations and crystallization of high‐density polyethylene (HDPE) reinforced with calcium carbonate (CaCO3) particles and an elastomer. Five series of blends were designed and manufactured, including one series of binary blends composed of HDPE and amino acid treated CaCO3 and four series of ternary blends composed of HDPE, treated or untreated CaCO3, and a polyolefin elastomer [poly(ethylene‐co‐octene) (POE)] grafted with maleic anhydride. The analysis of the tan δ diagrams indicated that the ternary blends exhibited phase separation. The modulus increased significantly with the CaCO3 content, and the glass‐transition temperature of POE was the leading parameter that controlled the mechanical properties of the ternary blends. The dynamic mechanical properties and crystallization of the blends were controlled by the synergistic effect of CaCO3 and maleic anhydride grafted POE, which was favored by the core–shell structure of the inclusions. The treatment of the CaCO3 filler had little influence on the mechanical properties and morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3907–3914, 2007  相似文献   

9.
Short bamboo fiber reinforced polypropylene composites were prepared by incorporation of various loadings of chemically modified bamboo fibers. Maleic anhydride grafted polypropylene (MA‐g‐PP) was used as compatibilizer to improve fiber–matrix adhesion. The effects of bamboo fiber loading and modification of the resin on the physical, mechanical, thermal, and morphological properties of the bamboo reinforced modified PP composites were studied. Scanning electron microscopy studies of the composites were carried out on the interface and fractured surfaces. Thermogravimetric analysis and IR spectroscopy were also carried out. At 50% volume fraction of the extracted bamboo fiber in the composites, considerable increase in mechanical properties like impact, flexural, tensile, and thermal behavior like heat deflection temperature were observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Polylactic acid (PLA) is regarded as one of the most promising bioplastics. However, its inherent high flammability of PLA seriously limits its application in the emerging fields. Although the traditional phosphate flame retardants showed excellent flame retardant efficiency in PLA, they often failed to meet the processing requirements of PLA and the thermal stability of PLA composites was decreased after their addition. Herein, an organophosphate flame retardant pentaerythritol bis(phenyl phosphonate) (PBPP) with high thermal stability and phosphorus content was synthesized by the nucleophilic substitution reaction in our laboratory. The introduction of PBPP simultaneously improved the flame retardancy, thermostability and crystallization properties of PLA. Only 3 wt% PBPP endowed PLA composites with UL-94 V-0 grade and higher LOI of 28.3% due to its excellent gas phase effect. Moreover, the crystallinity of PLA/PBPP4 was enhanced from 14.2% of PLA to 32.2% with the improvement of 127%. Because of the similar structure and good compatibility between organophosphate flame retardant and PLA matrix, flame retardant PLA/PBPP maintained almost the same strength as neat PLA. This study provided a novel way for the preparation of a high-performance flame retardant PLA composites with excellent comprehensive properties and it was important to expand the application value of multifunctional PLA materials.  相似文献   

11.
采用熔融共混法将环氧化杜仲胶(EEUG)用于聚乳酸(PLA)的增韧改性,制备了具有良好韧性的全生物基PLA/EEUG共混物,考察了EEUG用量对共混物的热性能、动态力学性能、力学性能及微观形貌等的影响.结果表明,PLA/EEUG共混物为典型的两相不相容体系.EEUG的加入限制了PLA分子链的运动,导致PLA的结晶度下降...  相似文献   

12.
In this paper, three-dimensional (3D) printing system based on fused deposition modeling (FDM) is used for the fabrication of polylactic acid (PLA) specimens with and without graphene and to measure their dynamic mechanical properties. In particular, 3D printed PLA/graphene nanocomposites containing 10wt% graphene in PLA matrix were characterized by compression tests, cyclic compression tests, nanoindentation and modal tests. The results of the mechanical tests reveal that the incorporation of multifunctional graphene has improved the modulus, the strength and the hardness of the 3D printed nanocomposites. The damping as calculated by cyclic compression and modal tests was substantially increased compared to neat PLA samples.  相似文献   

13.
Electrospun nanofibers have attracted tremendous attention because of their similar structure with extracellular matrix. In this work, the polydopamine (PDA) coating layer was first applied to modify hydroxyapatite (HA) nanoparticles and obtain functional HA@PDA nanoparticles. Subsequently, the polylactic acid (PLA)/HA@PDA composite nanofibers were prepared via electrospinning. The hydrophilicity and water absorption of PLA/HA@PDA composite nanofibers were larger than those of PLA and PLA/HA composite nanofibers. The thermal stability, static and dynamic mechanical properties of PLA/HA@PDA composite nanofibers significantly increased because the PDA coating layer on the surface of the HA nanoparticles acted like a glue-like transition layer, which led to an increase in interfacial adhesion between HA@PDA nanoparticles and the PLA matrix. The attachment and viability of mouse embryonic osteoblast cells (MC3T3-E1) cultured on the PLA/HA@PDA composite nanofibers were significantly increased compared with those cultured on the PLA and PLA/HA composite nanofibers. These results suggested that the PLA/HA@PDA composite nanofibers have superior mechanical and biological properties, which makes it potentially useful for tissue engineering scaffolds.  相似文献   

14.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

15.
The thermal, dynamic mechanical, and mechanical properties and morphology of two series of semi‐interpenetrating polymer networks (s‐IPNs) based on linear poly(vinyl acetate) (PVAc) and a crosslinked n‐butyl acrylate/1,6‐hexanediol diacrylate copolymer were investigated. The s‐IPN composition was varied with different monoacrylate/diacrylate monomer ratios and PVAc concentrations. The crosslinking density deeply affected the thermal behavior. The results showed that a more densely crosslinked acrylate network promoted phase mixing and a more homogeneous structure. The variation in the linear polymer concentration influenced both the morphology and mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Polylactide (PLA) was first plasticized with polydiethylene glycol adipate (PDEGA). Then the plasticized PLA was further blended with acrylic impact modifier (ACR) using a twin‐screw extruder. Finally, the extruded samples were blown using the blown thin film technique. Both PDEGA and ACR significantly affected the physical properties of the films. The results indicated that elongation at break and the tear strength of the films were significantly improved. The cavitation and large plastic deformation observed in films subjected to the tear test were the important energy‐dissipation process, which led to a torn PLA film. Moreover, the PLA/PDEGA/ACR blown films had excellent optical properties. ACR could act as a tear resistance modifier for PLA blown films. These findings contribute new knowledge to the additives area and give important implications for designing and manufacturing polymer packaging materials. © 2013 Society of Chemical Industry  相似文献   

17.
聚乳酸的热降解性能研究   总被引:1,自引:0,他引:1  
研究了聚乳酸(PLA)在10-40 min和170-200℃的条件下热降解后的特性粘数和端羧基含量的变化。结果表明,在一定温度下,PLA熔体特性粘数随熔融时间的延长而下降,在一定时间下,随熔融温度升高而下降,端羧基含量随熔融温度升高而增大,在PLA成型加工中,应严格控制加工温度。  相似文献   

18.
Acetyl tri‐n‐butyl citrate (ATBC) and poly(ethyleneglycol)s (PEGs) with different molecular weights (from 400 to 10000) were used in this study to plasticize poly(L‐lactic acid) (PLA). The thermal and mechanical properties of the plasticized polymer are reported. Both ATBC and PEG are effective in lowering the glass transition (Tg) of PLA up to a given concentration, where the plasticizer reaches its solubility limit in the polymer (50 wt % in the case of ATBC; 15–30 wt %, depending on molecular weight, in the case of PEG). The range of applicability of PEGs as PLA plasticizers is given in terms of PEG molecular weight and concentration. The mechanical properties of plasticized PLA change with increasing plasticizer concentration. In all PLA/plasticizer systems investigated, when the blend Tg approaches room temperature, a stepwise change in the mechanical properties of the system is observed. The elongation at break drastically increases, whereas tensile strength and modulus decrease. This behavior occurs at a plasticizer concentration that depends on the Tg‐depressing efficiency of the plasticizer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1731–1738, 2003  相似文献   

19.
Poly(3-hydroxybutyrate) (PHB), is one important biopolymer and a promising alternative to petroleum-based plastics. In this article, formulations of PHB and triethyl citrate (TEC) as plasticizer were prepared by melt extrusion. The effect of TEC on the mechanical, thermal, and morphological properties of PHB was investigated by tensile tests, impact resistance, dynamic-mechanical analysis, differential scanning calorimetry, polarized optical microscopy, and small- and wide-angle X-ray scattering. TEC acted as an efficient plasticizer for PHB, imparting gradual changes in the properties as the mass fraction of TEC increased. A reduction in the elastic modulus, an increase in the intensity of β relaxation indicated a higher capacity of mechanical energy dissipation for the formulations containing higher mass fractions of TEC. TEC reduced its glass transition and melting temperatures, contributing to the increase of the processing window of the temperature and minimizing thermal degradation of PHB. TEC had a strong influence on the kinetics of crystallization, the morphology of the spherulites, and the crystalline structural parameters, such as long period, crystalline lamella, and interlamellar amorphous region thicknesses. Our study clarifies how the morphology of the PHB crystalline phase evolves in the presence of the plasticizer and with the time of crystallization.  相似文献   

20.
Triethyl citrate (TC) was added as a plasticizer to a blend of poly(lactic acid) (PLA) and starch in the presence of methylenediphenyl diisocyanate (MDI). As expected, TC improved the elongation at break and toughness and, at the same time, decreased the tensile strength and modulus. However, TC did not significantly affect the coupling effects of MDI on starch and PLA. The tensile strength of the blend with MDI was much greater than the tensile strength without MDI at the same TC level. The tensile properties of the blend changed dramatically as the TC concentration increased from 5 to 12.5%. At a TC concentration of 7.5%, the blend produced desirable elongation and toughness with fairly good tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2947–2955, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号