首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The direct-type solar dryer is characterized by very simple construction, less maintenance, cost-effectiveness, and is easy to handle. The present study aims to enhance the performance of a direct-type solar dryer. To achieve this, the photovoltaic (PV) panels with thermal energy recovery and solar air collector were integrated with the direct-type solar dryer. In this study, the PV panels with thermal energy recovery and solar air collector were utilized as preheating units to raise the air temperature before entering the direct solar dryer. Moreover, the PV panels were utilized to drive the air blower. In this study, three incorporated models are suggested to study the performance of the solar dryer integrated with PV panels with thermal energy recovery and solar air collector. The model of each component was validated by the previously recorded empirical data. The results confirmed that the dual utilization of the PV panels with thermal energy recovery and solar air collector as a preheating unit raised the air temperature entering the direct solar dryer by the rate varying between 29°C and 42°C within the period 9:00 a.m.–4:00 p.m. Also, the moisture content of banana samples inside the direct solar dryer reduced from the initial value of 72% (wb) to the value of 33.4% (wb) within 7 h (9:00 a.m.–4:00 p.m.). During this operating period, moisture removal from the banana samples varied between 110 and 400 g/h.  相似文献   

2.
The Solar Energy Research Group in the Universiti Kebangsaan Malaysia has been set-up more than two decades ago. One of the activities is in the field of solar thermal process, particularly in development of solar assisted drying systems. Solar drying systems technical development can proceed in two directions. Firstly simple, low power, short life, and comparatively low efficiency-drying system. Secondly, the development of high efficiency, high power, long life expensive solar drying system. The group has developed four solar assisted drying systems namely (a) the V-groove solar collector, (b) the double-pass solar collector with integrated storage system, (c) the solar assisted dehumidification system for medicinal herbs and (d) the photovoltaic thermal (PVT) collector system. The common problems associated with the intermittent nature of solar radiation and the low intensities of solar radiation in solar thermal systems can be remedied using these types of solar drying systems. These drying systems have the advantages of heat storage, auxiliary energy source, integrated structure control system and can be use for a wide range of agricultural produce.  相似文献   

3.
This paper presents the thermal performance of a double-pass solar collector with and without porous media in the second or lower channel of the collector. The experimental setup has been designed to study the thermal performance over a range of design and operating conditions. Several important relationships between the design and operating conditions have been obtained. These relationships effect the thermal performance of the double-pass solar collector. The relationships include the effect of changes in upper and lower channel depth on the thermal efficiency with and without porous media. Moreover, the effects of mass flow rate, solar radiation, and temperature rises on the thermal efficiency of the double-pass solar collector have been studied. The study concluded that the presence of porous media in the second channel increases the outlet temperature, therefore increases the thermal efficiency of the systems.  相似文献   

4.
This paper presents an experimental comparative study on the thermal performance of the following three single-pass types of solar air heaters (SAHs): (i) without obstacles, (ii) with rectangular obstacles and (iii) with a new form of obstacles in the air flow duct. Thus, we carried out studies to compare the best system with (iiii) a double-pass flat plate collector having the same type of obstacles in order to determine the best-performing model. All collectors were designed, constructed and tested in the University of Biskra (Algeria) in a stand facing South at an inclination angle equal to the local latitude. In comparison with the recent literature, at different air mass flows, the highest efficiencies were obtained from the double-pass SAH with trapezoidal obstacles. In addition, this study has allowed us to show that the use of obstacles, in the air flow duct of the SAHs, is an efficient method to improve their performances.  相似文献   

5.
A solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors was developed. The dryer is a bin type with a rectangular perforated floor. The bin has a dimension of 1.0 m×2.0 m×0.7 m. Hot air is supplied to the dryer from fiberglass-covered solar collectors, which also function as the roof of a farmhouse. The total area of the solar collectors is 72 m2. To investigate its performance, the dryer was used to dry four batches of rosella flowers and three batches of lemon-grasses during the year 2002–2003. The dryer can be used to dry 200 kg of rosella flowers and lemon-grasses within 4 and 3 days, respectively. The products being dried in the dryer were completely protected from rains and insects and the dried products are of high quality. The solar air heater has an average daily efficiency of 35% and it performs well both as a solar collector and a roof of a farmhouse.  相似文献   

6.
A solar collector, part of a drying system using solar energy as a heat source, was developed and reported previously and used in product-drying applications. In this study, energy efficiency analyses of the drying system in terms of the collector efficiency were investigated. The results obtained show that the present collector used in this solar drying system is an efficient and effective unit for practical drying applications.  相似文献   

7.
In this paper, the development and testing of a new type of efficient solar dryer, particularly meant for drying vegetables and fruit, is described. The dryer has two compartments: one for collecting solar radiation and producing thermal energy and the other for spreading the product to be dried. This arrangement was made to absorb maximum solar radiation by the absorber plate. In this dryer, the product was loaded beneath the absorber plate, which prevented the problem of discoloration due to irradiation by direct sunlight. Two axial flow fans, provided in the air inlet, can accelerate the drying rate. The dryer had six perforated trays for loading the material. The absorber plate of the dryer attained a temperature of 97.2 °C when it was studied under no load conditions. The maximum air temperature in the dryer, under this condition was 78.1 °C. The dryer was loaded with 4 kg of bitter gourd having an initial moisture content of 95%, and the final desired moisture content of 5% was achieved within 6 h without losing the product colour, while it was 11 h for open sun drying. The collector glazing was inclined at a particular angle, suitable to the location, for absorption of maximum solar radiation. A detailed performance analysis was done by three methods, namely ‘annualized cost method’, ‘present worth of annual savings’ and ‘present worth of cumulative savings’. The drying cost for 1 kg of bitter gourd was calculated as Rs. 17.52, and it was Rs. 41.35, in the case of an electric dryer. The life span of the solar dryer was assumed to be 20 years. The cumulative present worth of annual savings over the life of the solar dryer was calculated for bitter gourd drying, and it turned out be Rs. 31659.26, which was much higher than the capital cost of the dryer (Rs. 6500). The payback period was calculated as 3.26 years, which was also very small considering the life of the system (20 years). So, the dryer would dry products free of cost during almost its entire life span. The quality of the product dried in the solar dryer was competitive with the branded products available in the market.  相似文献   

8.
In this paper, thermal models of all types of solar collector‐integrated active solar stills are developed based on basic energy balance equations in terms of inner and outer glass temperatures. In this paper, hourly yield, hourly exergy efficiency, and hourly overall thermal efficiency of active solar stills are evaluated for 0.05 m water depth. All numerical computations had been performed for a typical day in the month of 07 December 2005 for the climatic conditions of New Delhi (28°35′N, 77°12′E, 216 m above MSL). The thermal model of flat‐plate collector integrated with active solar still was validated using the experimental test set‐up results. Total daily yield from active solar still integrated with evacuated tube collector with heat pipe is 4.24 kg m?2 day?1, maximum among all other types of active solar stills. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The basic objective of this paper is to develop a comprehensive simulation model of the thermal performance of solar tunnel dryer. The model is useful in system design as it is sensitive to the design parameters of air collector and dryer (like, length, radius, tunnel tilt, etc.). It is also useful in determining the drying behaviour of high-moisture products (vegetables, fruits, etc.) as well as low-moisture products (barely, wheat, etc.). The performance of the dryer has been estimated for a natural convection mode flow. A transient one-dimensional model was developed for the dryer and the numerical calculations were made for the climate of Delhi. It is observed that a large quantity of barley about 2135 kg can be dried in this dryer within two days of operation upto an equilibrium moisture content. © 1998 John Wiley & Sons Ltd.  相似文献   

10.
Solar dryers have been tested with various simple and complex design modifications for better efficiencies. This article attempts to investigate the effect of a very simple design modification on the no-load performance of a natural convection domestic solar dryer (NCDSD). A direct-type domestic solar dryer has been developed with an air cavity surrounding the drying chamber. To compare the effect of air cavity, a domestic solar dryer without air cavity has also been developed and both the dryers were tested simultaneously under the climate of Hisar, India. The values of thermal efficiency were calculated along with convective heat transfer coefficient from absorber plate to the drying air. Both the dryers were also analyzed by developing finite element models in COMSOL multiphysics computer software. The no-load thermal efficiency for the domestic solar dryer without and with air cavity was found to be 22.68% and 34.08%, respectively. The values of coefficient of correlation for modeled and actual drying tray temperatures for dryer without and with air cavity were 0.980466 and 0.9833917, respectively. The proposed finite element model would be helpful in the design and development of NCDSDs.  相似文献   

11.
构建表面积为1.50 m×1.50 m的小型实验用盐梯度太阳池,并与平板太阳能集热器配合使用,分别对普通太阳池和集热增强型太阳池进行了储热、放热实验。实验研究与理论分析表明:单独盐梯度太阳池的放热量为3.5×103k J,热效率为13.6%;集热增强型太阳池放热量可以达到4.8×103k J,且热效率增至28.1%。另外后者下对流层温度最高可提升10℃以上,从而证明太阳能集热器可以有效提高太阳池热效率,增加下对流层储热量。此外,考虑了放热过程换热器对太阳池下对流层的扰动,对比实验前后的溶液浓度,可以看出实验后太阳池盐度曲线合理,非对流层呈良好梯度分布,太阳池稳定性并未遭到破坏。  相似文献   

12.
In the present investigation, two types (Type A and Type B) of the double-pass packed bed solar air heater under external recycle are investigated theoretically. In Type A, the porous media is considered in the upper channel, whereas in Type B, the porous media is considered in the lower channel. Iron scraps are used as a packed bed material (porous media) to strengthen the convective heat transfer coefficient for air flowing through the packed bed. The mathematical model for these two air heaters operating under forced convection mode is presented. The results revealed that the thermal and thermo-hydraulic efficiencies of Type A are higher as compared to Type B. In order to validate the models, the theoretical results obtained from the conventional model of Type B are compared with the theoretical results obtained from the previous investigation and showed that good agreement is achieved.  相似文献   

13.
In this paper, the effectiveness of ferrofluid as a working fluid for solar flat plate collectors (FPCs) is studied. A mini-ferrofluid-based solar FPC is designed and tested under laboratory conditions. The thermal performance of the designed solar FPC is evaluated under different conditions and it is observed that it provides higher efficiency for the case of ferrofluid in the presence of a magnetic field. The thermal efficiency is observed to increase by 54% for ferrofluid in presence of a magnetic field as compared to no magnetic field. The thermal efficiency is observed to increase further with the increase in the magnetic field. The increase in thermal efficiency is attributed to the combined effects of higher thermal conductivity and magnetohydrodynamics of ferrofluid, which result in higher convective heat transfer from the riser tube walls into ferrofluid. The higher heat transfer for ferrofluid with a magnetic field is established by calculating the Nusselt number numerically using COMSOL. Simulation results show an increase in Nusselt number for ferrofluid with magnetic field and hence higher thermal efficiency for the solar FPC. The designed FPC provides simple modifications to conventional FPCs to use ferrofluid with magnetic field for higher thermal efficiencies.  相似文献   

14.
This paper presents experimental performance of solar drying of rosella flower and chili using roof-integrated solar dryer and also presents modelling of the roof-integrated solar dryer for drying of chili. Field-level tests for deep bed drying of rosella flower and chili demonstrated that drying in the roof-integrated solar dryer results in significant reduction in drying time compared to the traditional sun drying method and the dry product is a quality dry product compared to the quality products in the markets. The payback period of the roof-integrated solar dryer is about 5 years. To simulate the performance of the roof-integrated solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors, two sets of equations were developed. The first set of equations was solved implicitly and the second set of equations was solved explicitly using finite difference technique. The simulated air temperatures at the collector outlet agreed well with the observed air temperatures. Good agreement was also found between experimental and simulated moisture contents.  相似文献   

15.
16.
In this paper, the thermal performance of double-pass packed-bed solar air heaters is investigated theoretically. A suitable computer program is developed for the analytical solution of the mathematical model which involves the energy balance equations for the different components of the air heaters. Three different characteristics of the double-pass packed-bed solar air heaters are considered for the analysis. The results obtained from the analytical models are compared with the experimental model data obtained from the previous works and showed that good agreement is achieved.  相似文献   

17.
Suleyman Karsli   《Renewable Energy》2007,32(10):1645-1660
This paper presents a performance analysis of four types of air heating flat plate solar collectors: a finned collector with an angle of 75°, a finned collector with an angle of 70°, a collector with tubes, and a base collector. In this study, the first and second laws of efficiencies were determined for the collectors and comparisons were made among them. The results showed that the efficiency depends on the solar radiation and the construction of the solar air collectors. The temperature rise varied almost linearly with the incident radiation. The first law of efficiency changed between 26% and 80% for collector-I, between 26% and 42% for collector-II, between 70% and 60% for collector-III, and between 26% and 64% for collector-IV. The values of second law efficiency varied from 0.27 to 0.64 for all collectors? The highest collector efficiency and air temperature rise were achieved by the finned collector with angle of 75°, whereas the lowest values were obtained for the base collector. The effectiveness order of the collectors was determined as the finned collector with angle of 75°, the finned collector with angle of 70°, the collector with tubes, and the base collector.  相似文献   

18.
In this paper we present a mathematical modelling of a thin layer forced solar drying of apricots. An indirect forced convection solar dryer consisting of a solar heater and a rotary column cylindrical drying (RCCD) cabinet was used in the experiments. Air heated by the solar air heater was forced through the apricots by an electrical fan. Moreover, the natural sun drying experiments were conducted for the comparison at the same time. Fourteen different thin layer mathematical drying models were compared according to their coefficients of determination (r,χ2, RMSE) to estimate solar drying curves. The effects of the drying air temperature, velocity and the rotation speed of column on the drying model constants and coefficients were predicted by multiple regressions using a linear type model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The thermoelectric (TE) solar air collector, sometimes known as the hybrid solar collector, generates both thermal and electrical energies simultaneously. A double-pass TE solar air collector has been developed and tested. The TE solar collector was composed of transparent glass, air gap, an absorber plate, thermoelectric modules and rectangular fin heat sink. The incident solar radiation heats up the absorber plate so that a temperature difference is created between the thermoelectric modules that generates a direct current. Only a small part of the absorbed solar radiation is converted to electricity, while the rest increases the temperature of the absorber plate. The ambient air flows through the heat sink located in the lower channel to gain heat. The heated air then flows to the upper channel where it receives additional heating from the absorber plate. Improvements to the thermal and overall efficiencies of the system can be achieved by the use of the double-pass collector system and TE technology. Results show that the thermal efficiency increases as the air flow rate increases. Meanwhile, the electrical power output and the conversion efficiency depend on the temperature difference between the hot and cold side of the TE modules. At a temperature difference of 22.8 °C, the unit achieved a power output of 2.13 W and the conversion efficiency of 6.17%. Therefore, the proposed TE solar collector concept is anticipated to contribute to wider applications of the TE hybrid systems due to the increased overall efficiency.  相似文献   

20.
A solar dryer fitted with a novel design of absorber having inbuilt thermal storage capabilities was designed, fabricated, simulated and also tested at Rajiv Gandhi College of Engineering Research & Technology, Chandrapur (MS) India. Thermic oil was used as a storage material. The main objective of the study was to reduce the drying period and enhance the quality of dried product mainly chillies and fenugreek leaves. The products were laid in a single layer. The dimensions of the dryer were arrived at using the well-defined procedure available in literature. The mass of thermic oil needed in the absorber and mass of product to be dried in trays were optimized using simulation techniques. The maximum drying air temperature required for drying agricultural products was around 65°C. The ambient conditions at the location were 25–40°C, 16–43% RH and solar radiation 105–1024 W m−2. Experimental studies based on temperature and humidity measurements were performed on the dryer. The research concluded that the desired drying air temperature was achieved and maintained for a longer period. The length of operation of the solar air heater and the efficiency of the dryer were increased, and better quality of agricultural products in terms of colour value were obtained compared with open sun drying. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号