首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
以实际直流交联聚乙烯(DC XLPE)电缆工程设计示例,表明将柔性直流输电(VSC)系统用DC XLPE电缆的导体的最高运行温度提高到90℃,其技术经济效果显著。按DC XLPE电缆抑制空间电荷要求,阐明DC XLPE电缆绝缘的直流恒定电流电场中空间电荷密度与绝缘温度梯度和XLPE绝缘的体积电阻率的温度系数成正比而与导体最高温度不直接相关。通过合理的DC XLPE电缆工程设计和正确选用DC XLPE电缆,可以在提高DC XLPE电缆传输功率和减小绝缘温差抑制空间电荷方面取得优化结果。320 kV及以下XLPE电缆在导体最高温度90℃下运行,绝缘损耗远低于导体损耗,DC XLPE电缆发生热不稳定的可能性很低。对VSC系统用DC XLPE电缆导体运行温度提高到90℃的可行性表示肯定的意见,对实现目标提出具体的措施建议。  相似文献   

2.
赵民 《电世界》2007,48(12):14-14
随着交联聚乙烯绝缘电力电缆(简称交联电缆或XLPE电缆)的推广使用,对交联电缆试验方法的争议日益突出。DL/T596-1996《电力设备预防性试验规程》规定:交联电缆新做头后必须做直流耐压试验;正常周期性预防性试验包括测试主绝缘绝缘电阻、外护套绝缘电阻以及铜屏蔽层直流电阻与导体直流电阻之比。  相似文献   

3.
运行老化交联聚乙烯(cross-linked polyethylene, XLPE)电缆导体屏蔽层侧的绝缘缺陷尚未引起充分关注。该文对新电缆及退运的老化电缆进行了超低频介损和微观理化性能对比测试,发现退运电缆处于严重老化状态,且导体屏蔽层侧的绝缘内部存在连续的片状老化缺陷。对退运电缆进行扫描电镜测试发现,导体屏蔽层与内侧绝缘层存在大量微孔。能谱分析证明,电缆老化后的导体屏蔽层及内侧绝缘中均有少量铝(Al)元素的存在。进一步采用红外光谱测试发现导体屏蔽层中的乙烯共聚物(ethylene-vinyl acetate copolymer,EVA)产生了老化降解,且内侧绝缘存在较为明显的羰基与羟基的红外吸收峰。因此,电缆运行过程中导体屏蔽层中的EVA可能存在一定程度的老化降解,降解产物进入绝缘内部参与XLPE的氧化降解反应,进而导致了导体屏蔽层侧的绝缘内部出现连续片状老化缺陷。  相似文献   

4.
<正> 交联聚乙烯(下称XLPE)电缆的绝缘,由内半导电层、绝缘层、外半导电层组成。在绝缘的交联过程中,往往利用蒸气作为加热媒质(蒸气交联)。蒸气在交联时侵入绝缘中,使绝缘内形成无数孔径数微米至几十微米的微孔;同时,交联反应本身也会使绝缘发泡而存在着许许多多的微孔。此外,在从树脂制造到电缆绝缘的挤塑过程中,常由于敞开的环境而有金属和非金属杂质污染了绝缘。虽然近年来XLPE申缆的制造工艺有了许多革新,如用干式交联代替蒸汽交联可以大大地减少绝缘内微孔数目和减小微孔孔  相似文献   

5.
高压交联聚乙烯(crosslinked polyethylene,XLPE)绝缘海底电缆工厂接头绝缘恢复工艺对接头绝缘和近接头电缆绝缘材料的晶相结构及介电性能影响的研究,对于提升工厂接头技术具有重要意义。通过研究500 kV高压交流海缆本体、工厂接头、近接头电缆绝缘的工频击穿性能以及交联度和晶相结构的分布特征,获得了工厂接头绝缘恢复工艺对近接头电缆绝缘击穿和晶相结构的影响规律。结果表明:工厂接头和电缆本体绝缘的工频击穿场强相近,并且工厂接头绝缘的结晶度较小,内部绝缘晶体表面能较低,晶面间距较大;与电缆本体绝缘相比,近接头电缆绝缘的工频击穿场强降低,交联度增加,结晶度减小,晶体表面能降低,晶面间距增大,这可能是由于近接头电缆绝缘再加热过程而发生二次硫化所致,同时消除了近接头电缆绝缘中工厂脱气形成的热历史。因此,建议在工厂接头绝缘恢复工艺中采用降低交联温度,增长交联时间等手段保证工厂接头绝缘与电缆本体绝缘性能的一致性,同时应注意近接头电缆绝缘再加热过程的温度控制。  相似文献   

6.
为研究不同运行年限交联聚乙烯(XLPE)电缆绝缘层不同位置的介电特性变化,文中对2条退役和1条备用110 kV电缆绝缘层进行分层取样,在50~250℃之间选取8个温度点,进行介电谱试验。结果表明:XLPE电缆绝缘的复介电常数在高温下随频率变化明显;各试样的电导率和松弛峰峰值频率随运行年限的增大先减小后增大,能较好反映不同运行年限电缆的介电特性变化;同一电缆试样不同绝缘层位置的松弛峰峰值频率对应的活化能和Cole-Cole曲线对应的圆心角之间的差异随运行年限的增大先减小后增大,能较好反映电缆不同绝缘层位置之间的介电特性差异。各试样介电特性在高温下随运行年限的变化可作为评估XLPE电缆绝缘状况的有效手段。  相似文献   

7.
对采用悬链工艺(HCCV)和立塔工艺(VCV)生产的110 kV交联聚乙烯电缆绝缘的微观结构进行表征。结果表明:相比VCV工艺XLPE电缆绝缘,HCCV工艺XLPE电缆绝缘的交联度更高、结晶度更低、球晶的平均尺寸更大、球晶尺寸的分布更加集中。在交联过程中,HCCV工艺XLPE电缆经历了更长的交联时间和更高的交联温度,因此具有更高的交联度。交联键对XLPE绝缘的结晶过程有抑制作用,因此HCCV工艺XLPE电缆绝缘的结晶度更低。在交联完毕后的冷却过程中,HCCV工艺XLPE电缆经历了更缓慢的降温过程,因此形成的球晶较完善、尺寸更大、球晶尺寸也更为集中。  相似文献   

8.
为掌握运行多年的交联聚乙烯(XLPE)电缆绝缘劣化状况及出现劣化的原因,采用热重法、红外光谱、机械强度试验分析了退运的14条110 kV和220 kV XLPE电缆绝缘。研究了电缆绝缘材料的热稳定性、物质成分及机械性能与电缆绝缘劣化的对应关系,并分析了14条退运电缆历史运行数据。结果表明,14条退运电缆中,有4条电缆绝缘出现了劣化,而这些电缆都经受过穿越故障电流或外部高温;起始分解温度、羰基指数、断裂能对表征XLPE电缆绝缘的劣化状况有很好的一致性,当绝缘出现劣化时,其起始分解温度降低、羰基指数升高、断裂能减小;交联电缆经受大的故障电流冲击或外部高温,都会加快绝缘的劣化。  相似文献   

9.
本文简要介绍了高频磁场感应加热的原理、特点,以及在电缆制造中导体预热的应用,这可提高电缆产品的质量,减小电缆绝缘层的内应力,使绝缘与导体更良好的结合,从而延长了电缆的使用寿命,另外,还可改善绝缘的交联效果,提高生产线速度,从而提高生产效率。  相似文献   

10.
《高电压技术》2021,47(8):2991-3000
交联聚乙烯(cross-linked polyethylene,XLPE)由于良好的电气性能而常被用作高压直流电缆的绝缘材料,但其内部缺陷形成的电荷陷阱会导致空间电荷积聚,从而加速绝缘材料的电老化。文中基于电荷陷阱对XLPE电缆绝缘电老化的影响,研究了电荷陷阱在XLPE电缆绝缘电老化过程的作用机理,并运用自由能增量理论定量地分析了电荷陷阱对电老化的影响。将电缆样品进行热老化预处理,得到具有不同电荷陷阱参数的XLPE样品,对其进行空间电荷测试和步进应力实验,验证了空间电荷陷阱和电老化进程之间的关系。结果表明,在XLPE电老化过程中,浅陷阱密度与材料的电老化速率正相关,而深陷阱对电老化过程起抑制作用。  相似文献   

11.
为探讨等温松弛电流法在高压交流(HVAC)电缆状态评估中应用的可行性,采用等温松弛电流法(IRC)对未老化和运行13 a的国产110 k V高压交联聚乙烯(XLPE)交流电缆进行了老化评估,并研究了直流电场下电缆绝缘切片的空间电荷分布,分析了绝缘内部的陷阱分布、松弛机理和绝缘状态的关联性。结果表明,未老化高压电缆的老化因子>1.89,绝缘切片样品表面区域存在明显的异极性空间电荷积累,残留在高压电缆内部的交联副产物以深能级陷阱形式存在,并与等温松弛电流中的第3类松弛相对应。运行13 a的高压电缆的老化因子明显高于未老化电缆的老化因子,且其绝缘切片表面区域的异极性空间电荷积累量和切片内部的最大电场畸变率增大,与等温松弛电流法提取的老化因子变化规律相同。因此老化因子可作为高压交流电缆绝缘老化状态的评估参数。  相似文献   

12.
为探讨等温松弛电流法在高压交流(HVAC)电缆状态评估中应用的可行性,采用等温松弛电流法(IRC)对未老化和运行13 a的国产110 k V高压交联聚乙烯(XLPE)交流电缆进行了老化评估,并研究了直流电场下电缆绝缘切片的空间电荷分布,分析了绝缘内部的陷阱分布、松弛机理和绝缘状态的关联性。结果表明,未老化高压电缆的老化因子1.89,绝缘切片样品表面区域存在明显的异极性空间电荷积累,残留在高压电缆内部的交联副产物以深能级陷阱形式存在,并与等温松弛电流中的第3类松弛相对应。运行13 a的高压电缆的老化因子明显高于未老化电缆的老化因子,且其绝缘切片表面区域的异极性空间电荷积累量和切片内部的最大电场畸变率增大,与等温松弛电流法提取的老化因子变化规律相同。因此老化因子可作为高压交流电缆绝缘老化状态的评估参数。  相似文献   

13.
基于交联聚乙烯(XLPE)电缆水树状老化的原理,直流分量法和交流叠加法是两种有效的XLPE电缆在线监测方法。设计了综合上述两种方法的在线监测系统,其中包括设计方案、系统构成、关键技术等。结果表明:设计的XLPE电缆在线监测系统能够反映运行中电缆绝缘的老化程度,实现了XLPE电缆的在线监测。  相似文献   

14.
XLPE电缆在线自动绝缘诊断技术研究   总被引:4,自引:0,他引:4  
交联聚乙烯 (XLPE)电缆绝缘老化自动检测系统采用直流成分法、直流叠加法和补偿电势法三种方法 ,可对运行中的XLPE电缆主绝缘状况和护套破损情况进行可靠、有效的现场在线监测 ,并实现对XLPE电缆绝缘老化状况的快速评估。介绍了该系统所采用的抗干扰技术及系统构成。  相似文献   

15.
为改善交联聚乙烯(XLPE)绝缘高压直流电缆中间接头内的电场分布,通过添加纳米填料制备了用于制作电缆接头应力控制体的非线性硅橡胶复合材料。建立了高压直流电缆接头仿真模型,测试了各绝缘材料的电导特性,计算了电缆接头内的电场分布。研究结果表明,70 ℃时在各场强下未改性硅橡胶的电导率都小于高压直流电缆XLPE绝缘,故电缆接头内的最高场强点位于硅橡胶增强绝缘内,且最大场强远大于电缆本体绝缘的平均场强;以非线性硅橡胶做应力控制体增强绝缘时,超过一定场强后增强绝缘的电导率明显大于XLPE绝缘,保证了电缆接头内最高场强点永远位于XLPE绝缘内,且接近于平均场强。  相似文献   

16.
近几年,火力发电厂在更新电缆及新安装电缆时大都采用了交联聚乙稀电缆(XLPE绝缘电缆),这是因为它有不受高落差限制、铜芯承受温度较高、输送容量相对较大、介质损耗低、安装运行维护简单方便等优点,但在使用中,其XLPE绝缘材料内部存留应力的问题应得到重视。火力发电厂所用电力电缆一般都在1000V以下,由于电压低,安装电缆接头时沿袭老习惯施工,忽略了XLPE材料在生产时内部存留应力这一事实,当安装附件需要将XLPE绝缘电缆切断时,这些应力随着时间推移会自然消失而使主绝缘回缩。火力发电厂在事故情况下抢修时,因工期紧,不能等应力全…  相似文献   

17.
为了研究交联聚乙烯(XLPE)电缆中水树的生长机理,采用水针电极、高频高压的方法对XLPE薄片试样进行加速水树老化实验,通过显微镜观察经硅油加热处理前后的水树形态,构建有限元仿真模型,分析水树生长与电-机械应力的关系,并建立了水树生长的数学模型。结果表明:电-机械应力是导致水树生长的主要原因。在交变电场的作用下,环境中的水分在电缆绝缘中的杂质或缺陷处聚集,形成一系列充水微孔,并对其周围XLPE材料形成交变的Maxwell应力,导致XLPE分子链因应力疲劳而发生断裂,疲劳断裂的累积导致微孔体积增大、数量增多,这些微孔通过水树通道相连形成树枝状的水树形态。  相似文献   

18.
高压交联聚乙烯(XLPE)电缆长期在振动环境中运行时将导致绝缘结构疲劳损坏,为了分析交联聚乙烯电缆固有频率与外部振动耦合条件下的位移与内部应力分布,在简支梁固有频率计算及振动模态分析的基础上,仿真获得了不同敷设条件下外部频率对电缆内部应力、位移分布的影响。仿真结果表明:铁路桥梁敷设电缆时,敷设距离的制约使得电缆固有频率处内部应力、位移最大值都急剧增大;隧道敷设电缆时,其内部应力、位移分布呈周期性波动;在共振与非共振频率下,内部应力、位移的大小相差很大;经仿真计算得出,隧道内500 kV交联聚乙烯电缆的敷设间距应小于3.42 m,以防止电缆共振。根据电缆模态分析,提出交联聚乙烯电缆在强振动区域敷设时应适当减小电缆夹具间距,避免外部频率与电缆固有频率耦合产生共振而导致电缆损坏,这对制定强振动区域内电缆敷设方式及运维策略具有指导意义。  相似文献   

19.
高压直流(HVDC)交联聚乙烯(XLPE)绝缘海底电缆是实现长距离和大容量电能输送的重要设备。HVDC海底电缆负荷影响温度分布,而温度对HVDC XLPE绝缘电导率和电场强度分布特性有重要影响。相对于稳态负荷条件,暂态负荷条件下HVDC海底电缆热传递过程更加复杂。为研究暂态负荷下HVDC海底电缆热传递过程,建立热学有限元模型,仿真分析HVDC海底电缆由零负荷向满负荷再向零负荷转变过程的热传递过程,并组建试验平台开展对比研究。研究结果表明:仿真计算结果和试验测试结果吻合度高,仿真模型适用于描述暂态负荷下HVDC海底电缆热传递过程;通过构建导体温度暂态分量和稳态分量,可以实现良好的导体温度热传递过程趋势拟合,拟合方法有利于指导HVDC海底电缆温度趋势预测和现场运行维护工作。  相似文献   

20.
为研究直流电压下交联聚乙烯(XLPE)电缆出现绝缘缺陷时的泄漏电流特性,模拟高压XLPE电缆常见缺陷,设计并制作了主绝缘外表面划伤、高压端导体毛刺、绝缘内部气隙和外半导电层残留四类典型绝缘缺陷模型,仿真研究了不同缺陷下的电场与电导率分布特性。采用阶梯升压法在直流电压下进行泄漏电流试验,讨论了稳态泄漏电流与电压关系,并对泄漏电流-时间曲线进行波形分析。仿真及试验结果表明:导体毛刺缺陷电场与电导率畸变最严重,绝缘表面划伤缺陷与绝缘内部气隙缺陷畸变程度次之;导体毛刺缺陷泄漏电流增长速度随电压升高明显加快;泄漏电流波动程度随电压升高而增大,但电压升至一定程度后绝缘表面划伤缺陷和导体毛刺缺陷的泄漏电流波动有所减小;不同类型缺陷的各频带小波包系数能量存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号