首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na-gradient. Sodium-activated amino acid transport for 18 of these amino acids has been shown to occur in direct response to the protonmotive force generated. Glutamate is transported only in response to a sodium gradient. Michaelis constants for the uptake of these amino acids are close or identical whether the amino acids are accumulated in response to a sodium gradient or a protonmotive force (i.e., electrical gradient). On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids, i.e., arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.  相似文献   

2.
During illumination Halobacterium halobium cell envelope vesicles accumulate [3H]glutamate by an apparently unidirectional transport system. The driving force for the active transport originates from the light-dependent translocation of protons by bacteriorhodopsin and is due to a transmembrane electrical potential rather than a pH difference. Transport of glutamate against high concentration gradients is also achieved in the dark, with high outside/inside Na+ gradients. Transport in both cases proceeds with similar kinetics and shows a requirement for Na+ on the outside and for K+ on the inside of the vesicles. The unidirectional nature of glutamate transport seems to be due to the low permeability of the membranes to the anionic glutamate, and to the differential cation requirement of the carrier on the two sides of the membrane for substrate translocation. Thus, glutamate gradients can be collapsed in the dark either by lowering the intravesicle pH (with nigericin, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone plus valinomycin), or by reversing the cation balance across the membranes, i.e., providing NaCl on the inside and KCl on the outside of the vesicles. In contrast to the case of light-dependent glutamate transport, the initial rates of Na+-gradient-dependent transport are not depressed when an opposing diffusion potential is introduced by adding the membrane-permeant cation, triphenylmethylphosphonium bromide. Therefore, it appears that, although the electrical potential must be the primary source of energy for the light-dependent transport, the translocation step itself is electrically neutral.  相似文献   

3.
R E MacDonald  L K Lanyi 《Biochemistry》1975,14(13):2882-2889
Halabacterium halobium cell envelope vesicles accumulate L-[14-C]leucine during illumination, against a large concentration gradient. Leucine uptake requires Na-+ and is optimal in KCl-loaded vesicles resuspended in KCl-NaCl solution (1.5 M:1.5 M). Half-maximal transport is seen at 1 X 10-minus 6 M leucine. In the dark the accumulated leucine is rapidly and exponentially lost from the vesicles. The action spectrum and the light-intensity dependence indicate that the transport is related to the extrusion of protons, mediated by bacteriorhodopsin. Since light gives rise to both a pH gradient and an opposing transmembrane potential (interior negative), it wass responsible for providing the energy for leucine transport. The following results were obtained under illumination: (1) membrane-permeant cations and valinomycin or gramicidin greatly inhibited leucine transport without altering the pH gradient; (2) buffering both inside and outside the vesicles eliminated the pH gradient while enhancing leucine transport; (3) dicyclohexylcarbodiimide increased the pH gradient without affecting leucine transport; (4) arsenate did not inhibit leucine uptake. A diffusion potential, established by adding valinomycin to KCl-loaded vesicles, caused leucine influx in the dark. These results suggest that the leucine transport system is not coupled to ATP hydrolysis, and responds to the membrane potential rather than to the pH gradient. The Na-+ dependence of the transport and the observation that a small NaCl pulse causes transient leucine influx in the dark in KCl-loaded vesicles, resuspended in KCl, even in the presence of p-trifluoromethoxycarbonylcyanide phenylhydrazone or with buffering, suggest that the translocation of leucine is facilitated by symport with Na-+.  相似文献   

4.
Structure of the cell envelope of Halobacterium halobium   总被引:5,自引:0,他引:5       下载免费PDF全文
The structure of the isolated cell envelope of Halobacterium halobium is studied by X-ray diffraction, electron microscopy, and biochemical analysis. The envelope consists of the cell membrane and two layers of protein outside. The outer layer of protein shows a regular arrangement of the protein or glycoprotein particles and is therefore identified as the cell wall. Just outside the cell membrane is a 20 A-thick layer of protein. It is a third structure in the envelope, the function of which may be distinct from that of the cell membrane and the cell wall. This inner layer of protein is separated from the outer protein layer by a 65 A-wide space which has an electron density very close to that of the suspending medium, and which can be etched after freeze-fracture. The space is tentatively identified as the periplasmic space. At NaCl concentrations below 2.0 M, both protein layers of the envelope disintegrate. Gel filtration and analytical ultracentrifugation of the soluble components from the two protein layers reveal two major bands of protein with apparent mol wt of approximately 16,000 and 21,000. At the same time, the cell membrane stays essentially intact as long as the Mg++ concentration is kept at treater than or equal to 20 mM. The cell membrane breaks into small fragments when treated with 0.1 M NaCl and EDTA, or with distilled water, and some soluble proteins, including flavins and cytochromes, are released. The cell membrane apparently has an asymmetric core of the lipid bilayer.  相似文献   

5.
《BBA》1985,809(1):66-73
Volume changes in illuminated cell envelope vesicles, prepared from various Halobacterium halobium strains, were measured with an ESR method. We demonstrated light-dependent swelling of vesicles which contained halorhodopsin (an inward-directed light-driven chloride pump), and shrinking of vesicles which contained bacteriorhodopsin (an outward-directed light-driven proton pump coupled to a proton/sodium antiporter). The swelling of the halorhodopsin vesicles was not inhibited by uncouplers or gramicidin, but the shrinking of the bacteriorhodopsin-vesicles was abolished by these ionophores. These findings confirm earlier models for ion circulation in these systems. Vesicles from strains which contained both pigments showed relatively small net volume changes upon illumination. A scheme of ionic transport in H. halobium cells is suggested, in which the inward movement of K+ exceeds the outward movement of Na+, and the difference equals the Cl uptake, so as to provide the net gain of KCl necessary for volume increases during cell growth.  相似文献   

6.
The characteristics of ATP synthesis in cell envelope vesicles of Halobacterium halobium were further studied. The results confirmed the previous conclusion (Mukohata et al. (1986) J. Biochem. 99, 1-8) that the ATP synthase in this extremely halophilic archaebacterium can not be an ordinary type of F0F1-ATPase, which has been thought to be ubiquitous among all the aerobic organisms on our biosphere. The ATP synthesis was activated most in 1 M NaCl and/or KCl, and at 40 degrees C, and at 80 mM MgCl2 where F0F1-ATPase loses its activity completely. The synthesis was negligible at 10 degrees C, and at 5 mM MgCl2. The Km for ADP was about 0.3 mM in the presence of 20 mM Pi, 1 M NaCl, 80 mM MgCl2, and 10 mM PIPES at pH 6.8 and 20 degrees C. The ATP synthesis was not inhibited by NaN3 and quercetin (specific inhibitors for F0F1-ATPase) or vanadate (for E1E2-ATPase) or ouabain (for Na+,K+-ATPase) or P1,P5-di(adenosine-5')pentaphosphate (AP5A, for adenylate kinase). The ATP synthesis was not inhibited by modification (pretreatment) with NaN3 or 5'-p-fluorosulfonylbenzoyladenosine (FSBA). On the contrary, the ATP synthesis was rather non-specifically inhibited by N-ethylmaleimide (NEM), trinitrobenzenesulfonate (TNBS), phenylglyoxal, and pyridoxal phosphate. 7-Chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) as well as N,N'-dicyclohexylcarbodiimide (DCCD) was found to be a specific inhibitor at least partly, because the NBD-Cl inhibition was partly prevented by ADP added to the modification mixture.  相似文献   

7.
Vesicles can be prepared from Halobacterium halobium cell envelopes, which contain properly oriented bacteriorhodopsin and which extrude H+ during illumination. The pH difference that is generated across the membranes is accompanied by an electrical potential of 90-100 mV (interior negative) and the movements of other cations. Among these is the efflux of Na+, which proceeds against its electrochemical potential. The relationship between the size and direction of the light-induced pH gradient and the rate of depletion of Na+ from the vesicles, as well as other evidence, suggest that the active Na+-extrusion is facilitated by a membrane component that exchanges H+ for Na+ with a stoichiometry greater than 1. The gradients of H+ and Na+ are thus coupled to one another. The Na+-gradient (Na+out greater than Na+in), which arises during illumination, plays a major role in energizing the active transport of amino acids.  相似文献   

8.
9.
Membrane vesicles prepared from Halobacterium halobium extrude protons during illumination, and a pH difference (inside alkaline) and an electrical potential (inside negative) develop. The sizes of these gradients and their relative magnitudes are dependent on a complex interaction among the proton-pumping activity of bacteriorhodopsin, Na+ extrusion through an antiport system, and the ability of K+ and Cl? to act as counterions to the electrogenic movement of H+. The net result of these variable effects is that the electrical potential is relatively independent of external pH, whereas the pH difference tends toward zero when the pH is increased to 7.5–8. Although the light-induced pH difference is greater in KCl than in NaCl, and the electrical potential smaller, this is not caused by a high permeability of the vesicle membranes to K+. The vesicle membrane is poorly permeable to K+, as shown by: lack of a K+ diffusion potential in the absence of valinomycin, light-induced electrical potentials which are in excess of the chemical potential difference for K+, and direct measurements of the slow rate of K+ influx during illumination. The finding that the rate of K+ uptake is a linear function of external K+ concentration between 0 and 1 m is inconsistent with the existence of a specific K+ permeation mechanism in these vesicles. Since at external K+ concentrations < 1.4 m the extrusion of Na+ during illumination proceeds much more rapidly than K+ influx, it must be concluded that the vesicles also lose Cl? and water. Measurements of light-scattering changes confirm that under these conditions the vesicles collapse. The light-induced collapse is diminished only when the inward movement of K+ is increased, either by increasing the external K+ concentration or by adding valinomycin.  相似文献   

10.
Illumination of cell envelope vesicles from H. halobium causes the development of protonmotive force and energizes the uphill transport of glutamate. Although the uncoupler, p-trifluoromethoxycarbonyl cyanide phenylhydrazone (FCCP), and the membrane-permeant cation, triphenylmethylphosphonium (TPMP+), are inhibitory to the effect of light, the time course and kinetics of the production of the energized state for transport, and its rate of decay after illumination, are inconsistent with the idea that glutamate accumulation is driven directly by the protonmotive force. Similarities between the light-induced transport and the Na+-gradient-induced transport of glutamate in these vesicles suggest that the energized state for the amino acid uptake in both cases consists of a transmembrane Na+ gradient (Na+out/Na+in greater than 1). Rapid efflux of 22Na from the envelope vesicles is induced by illumination. FCCP and TPMP+ inhibit the light-induced efflux of Na+ but accelerate the post-illumination relaxation of the Na+ gradient created, suggesting electrogenic antiport of Na+ with another cation, or electrogenic symport with an anion. The light-induced protonmotive force in the H. halobium cell envelope vesicles is thus coupled to Na+ efflux and thereby indirectly to glutamate uptake as well.  相似文献   

11.
12.
Analysis of Halobacterium halobium gas vesicles   总被引:10,自引:6,他引:4       下载免费PDF全文
Gas vesicles, isolated from lysed Halobacterium halobium cells, gave an amino acid analysis which accounted for 78% of the weight, and the balance was mainly salt and water. One percent of tightly bound d-galactose was found, as well as 2% of phosphate that was not released by treatment which promotes beta-elimination, by hydrolytic release of the galactose, by carboxymethylation of lysine, or by alkaline phosphatase digestion. Only a trace of lipid was detected, and it appeared to have a polyisoprenoid structure. The vesicles were not solubilized by extremes of pH, by agents such as urea, guanidine hydrochloride, formic acid, and detergents, or by organic solvents. Succinylation and carboxymethylation gave partial dispersion, but the products were heterogeneous and of high molecular weight. The amino acid composition of vesicles was independent of fragment size. No band was obtained by polyacrylamide gel electrophoresis, with neutral, acidic, and alkaline systems, with or without sodium dodecyl sulfate and urea, before or after chemical modification. No amino terminus was detected. Electrofocusing of a vesicle dispersion showed a major component with a pI of 4.0 and an amino acid composition of the whole vesicles, and a minor band with pI 3.4 which had an amino acid composition different from whole vesicles. Vesicle protein was resistant to digestion by Pronase, trypsin, thermolysin, and papain. The precipitin reaction with rabbit antivesicle serum was not inhibited by galactose or inorganic phosphate. Succinylated and carboxymethylated vesicles cross-reacted with antivesicle serum. Cell lysates contained material which reacted with antiserum, but it was heterogeneous and mainly larger than 5 x 10(6) daltons. Material from nonvacuolated mutants reacted weakly with antiserum, but the amino acid composition of the precipitated antigen was different from that of vesicles and of soluble cross-reacting material from vacuolated cells.  相似文献   

13.
R Renthal  J K Lanyi 《Biochemistry》1976,15(10):2136-2143
Illumination of envelope vesicles prepared from Halobacterium halobium cells causes translocation of protons from inside to outside, due to the light-induced cycling of bacteriorhodopsin. This process results in a pH gradient across the membranes, an electrical potential, and the movements of K+ and Na+. The electrical potential was estimated by following the fluorescence of a cyanine dye, 3,3'-dipentyloxadicarbocyanine. Illumination of H. halobium vesicles resulted in a rapid, reversible decrease of the dye fluorescence, by as much as 35%. This effect was not seen in nonvesicular patches of purple membrane. Observation of maximal fluorescence decreases upon ilumination of vesicles required an optimal dye/membrane protein ratio. The pH optimum for the lightinduced fluorescence decrease was 6.0. The decrease was linear with actinic light intensity up to about 4 X 10(5) ergs cn-2 s-1. Valinomycin, gramicidin, and triphenylmethylphosphonium ion all abolished the fluorescence changes. However, the light-induced pH change was enhanced by these agents. Conversely, buffered vesicles showed no pH change but gave the same or larger fluorescence changes. Thus, we have identified the fluorescence decrease with a light-induced membrane potential, inside negative. By using valinomycin-K+-induced membrane potentials, we calibrated the fluorescence decrease with calculated Nernst diffusion potentials. We found a linear dependence between potential and fluorescence decrease of 3 mV/%, up to 90 mV. When the envelope vesicles were illuminated, the total proton-motive force generated was dependent on the presence of Na+ and K+ and their concentration gradients across the membrane. In general, K+ appeared to be more permeable than Na+ and, thus, permitted development of greater pH gradients and lower electrical potentials. By calculating the total proton-motive force from the sum of the pH and potential terms, we found that the vesicles can produce proton-motive forces near--200 mV.  相似文献   

14.
J K Lanyi  R E MacDonald 《Biochemistry》1976,15(21):4608-4614
Illumination causes the extrusion of protons from Halobacterium halobium cell envelope vesicles, as a result of the action of light on bacteriorhodopsin. The protonmotive force developed is coupled to the active transport of Na+ out of the vesicles. The light-dependent ion fluxes in these vesicles were studied by following changes in the external pH, in the fluorescence of the dye, 3,3'-dipentyloxadicarbocyanine, in the 22Na content of the vesicles, and in [3H]dibenzyldimethylammonium (DDA+) accumulation. During Na+ efflux, and dependent on the presence of Na+ inside the vesicles, the initial light-induced H+ extrusion is followed by H+ influx, which results in net alkalinization of the medium at pH greater than 6.5. When the Na+ content of the vesicles is depleted, the original net of the medium is restored and large deltapH develops, accompanied by a decrease in the electrical potential. Data reported elsewhere suggest that the driving force for the transport of some amino acids consists mainly of the electrical potential, while for others it comprises the Na+ gradient as well. Glutamate transport appears to be energized only by the Na+ gradient. The development of the Na+ gradient during illumination thus plays an important role in energy coupling. The results obtained are consistent with the existence of an electrogenic H+/Na+ antiport mechanism (H+/Na+ greater than 1) in H halobium which facilitates the uphill Na+ efflux. The light-induced protonmotive force thereby becomes the driving force in forming a Na+ gradient. The presence of the proposed H+/Na+ antiporter explains many of the light-induced pH effects in intact H. halobium cells.  相似文献   

15.
Cell envelope vesicles, prepared from Halobacterium halobium, were loaded with 3 M KCl suspended in 3 M NaCl, and the loss of K+ was followed at various temperatures. The Arrhenius plot of the K+-efflux rates shows a break at 30°C, with higher energy of activation above the break. This temperature dependence is consistent with earlier studies of chain motions in liposomes prepared from isolated lipids. The efflux of K+ is more rapid with increasing pH between pH 5 and 7. Since these vesicles do not respire under the experimental conditions it was expected that the K+-efflux data would be related to the passive permeability of the membranes to K+. The apparent K+ permeability at 30°C is 1–2· 10?10 cm·?1. This value corresponds to a 5-h half-life for retained K+ in the envelope vesicles and to a probably much longer half-life in whole cells. The previously observed ability of Halobacterium to retain K+ in the absence of metabolism can thus be explained solely by the permeability characteristics of the membranes.  相似文献   

16.
Cell envelope vesicles, prepared from Halobacterium halobium, were loaded with 3 M KCl, suspended in 3 M NaCl, and the loss of K+ was followed at various temperatures. The Arrhenius plot of the K+-efflux rates shows a break at 30 degrees C, with higher energy of activation above the break. This temperature dependence is consistent with earlier studies of chain motions in liposomes prepared from isolated lipids. The efflux of K+ is more rapid with increasing pH between pH 5 and 7. Since these vesicles do not respire under the experimental conditions it was expected that the K+-efflux data would be related to the passive permeability of the membranes to K+. The apparent K+ permeability at 30 degrees C is 1--2 - 10(-10) cm - s-1. This value corresponds to a 5-h half-life for retained K+ in the envelope vesicles and to a probably much longer half-life in whole cells. The previously observed ability of Halobacterium to retain K+ in the absence of metabolism can thus be explained solely by the permeability characteristics of the membranes.  相似文献   

17.
Cell envelope vesicles active in ATP synthesis were prepared from Halobacterium halobium cells, which genetically lack bacteriorhodopsin, by sonication in the presence of substrates. ATP was synthesized when vesicles were illuminated to build up membrane potential through the action of halorhodopsin. The threshold value of membrane potential for ATP synthesis was about -100 mV relative to the external medium, i.e., inside-negative. ATP synthesis also occurred in the dark upon acidification of the external medium of a suspension of cell envelope vesicles. This base-acid transition ATP synthesis took place when the pH difference was greater than 1.6 units. The threshold pH difference was lowered when the base-acid transition was carried out under dim light which induced a membrane potential of about -100 mV. Regardless of the sort of driving force, ATP synthesis was optimum at the intravesicular pH of around 6.5 and almost nil at 8, where ATP syntheses by F0F1 type ATPases in other organisms are most active. The synthesis could be inhibited by N,N'-dicyclohexylcarbodiimide (DCCD) with a half-maximum inhibition at around 25 microM/2 mg protein/ml. These results strongly suggest that in halobacteria a DCCD-sensitive H+-translocating ATP synthase is in operation which is driven by membrane potential and/or pH gradient, and obeys chemiosmotic energetics. The results also suggest that the ATP synthase may not be identical to F0F1 type H+-translocating ATPases found in mitochondria, chloroplasts and eubacteria.  相似文献   

18.
19.
The effects of N,N'-dicyclohexylcarbodiimide (DCCD) and various ionophores on light-induced 22Na+-transport were studied in right-side-out membrane vesicles from Halobacterium halobium R1M1. The light-induced Na+ efflux was inhibited at the same DCCD concentration (greater than 40 nmol/mg protein) as required for inhibition of the Na+-dependent membrane potential (delta phi) formation. This supports our previous indication that the DCCD-sensitive, Na+-dependent transformation of pH-gradient (delta pH) into delta phi is mediated by Na+/H+-antiporter (Murakami, N. and Konishi, T. (1985) J. Biochem. 98, 897-907). FCCP or a combination of valinomycin and triphenyltin (TPT) inhibits the light-induced Na+ efflux in accordance with the notion of protonmotive force (delta mu H+)-driven antiporter. However, a marked lag in initiation of the Na+ efflux occurred in the presence of valinomycin, TPMP+, or a small amount of FCCP, suggesting that a gating step is involved in the Na+ efflux. On the other hand, the delta pH-dissipating ionophore TPT did not cause the lag. A simultaneous determination of delta phi, delta pH, and Na+ efflux rate at the initial stage of illumination revealed that the antiporter is gated by delta phi rather than delta mu H+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号