首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The dolomite modified with acetic acid solution was proposed as a CO2 sorbent for calcination/carbonation cycles. The carbonation conversions for modified and original dolomites in a twin fixed-bed reactor system with increasing the numbers of cycles were investigated. The carbonation temperature in the range of 630 °C–700 °C is beneficial to the carbonation reaction of modified dolomite. The carbonation conversion for modified dolomite is significantly higher than that for original sorbent at the same reaction conditions with increasing numbers of reaction cycles. The modified dolomite exhibits a carbonation conversion of 0.6 after 20 cycles, while the unmodified sorbent shows a conversion of 0.26 at the same reaction conditions, which is calcined at 920 °C and carbonated at 650 °C. At the high calcination temperature over 920 °C modified dolomite can maintain much higher conversion than unmodified sorbent. The mean grain size of CaO derived from modified dolomite is smaller than that from original sorbent with increasing numbers of reaction cycles. The calcined modified dolomite possesses greater surface area and pore volume than calcined original sorbent during the multiple cycles. The pore volume and pore area distributions for calcined modified dolomite are also superior to those for calcined unmodified sorbent during the looping cycle. The modified dolomite is proved as a new and promising type of regenerable CO2 sorbent for industrial applications.  相似文献   

2.
CaO-based sorbent looping cycle, i.e. cyclic calcination/carbonation, is one of the most interesting technologies for CO2 capture during coal combustion and gasification processes. In order to improve the durability of limestone during the multiple calcination/carbonation cycles, modified limestone with acetic acid solution was proposed as an CO2 sorbent. The cyclic carbonation conversions of modified limestone and original one were investigated in a twin fixed bed reactor system. The modified limestone shows the optimum carbonation conversion at the carbonation temperature of 650 °C and achieves a conversion of 0.5 after 20 cycles. The original limestone exhibits the maximum carbonation conversion of 0.15 after 20 cycles. Conversion of the modified limestone decreases slightly as the calcination temperature increases from 920 °C to 1100 °C with the number of cycles, while conversion of the original one displays a sharp decay at the same reaction conditions. The durability of the modified limestone is significantly better than the original one during the multiple cycles because mean grain size of CaO derived from the modified limestone is lower than that from the original one at the same reaction conditions. The calcined modified limestone shows higher surface area and pore volume than the calcined original one with the number of cycles, and pore size distribution of the modified limestone is superior to the original one after the same number of calcinations.  相似文献   

3.
The calcination/carbonation loop of calcium-based (Ca-based) sorbents is considered as a viable technique for CO2 capture from combustion gases. Recent attempts to improve the CO2 uptake of Ca-based sorbents by adding calcium lignosulfonate (CLS) with hydration have succeeded in enhancing its effectiveness. The optimum mass ratio of CLS/CaO is 0.5 wt.%. The reduction in particle size and grain size of CaO appeared to be parts of the reasons for increase in CO2 capture. The primary cause of increase in reactivity of the modified sorbents was the ability of the CLS to retard the sintering rate and thus to remain surface area and pore volume for reaction. The CO2 uptake of the modified sorbents was also enhanced by elevating the carbonation pressure. Experimental results indicate that the optimal reaction condition of the modified sorbents is at 0.5 MPa and 700 °C and a high conversion of 0.7 is achieved after 10 cycles, by 30% higher than that of original limestone, at the same condition.  相似文献   

4.
Porous 7Na2O-23B2O3-70SiO2 glass was successfully fabricated by acid leaching treatment and phase-separation. The 2 mol/l hydrochloric acid (HCl) solution treatment was used for 24 h. Thermal analysis and X-ray diffraction were used to identify the temperature range of heat-treatment. The average pore size and the pore volume were investigated by a nitrogen adsorption instrument, and SEM was used to characterize the appearance of the porous glass. The results show that the average size of pores changed from 3.75 nm to 3.03 nm when heat treated at 640-680 °C for 6 h. In addition, when heat treated at 640 °C for 6-24 h, the pore size fell from 3.75 nm to 3.66 nm. The surface area and pore volume become larger with the increase in both temperature and heat treatment time.  相似文献   

5.
Calcium-carbonate powders were coprecipitated with Al3+ and then decomposed in air and/or under a CO2 flux between 590 °C and 1150 °C. The data were analysed using a consecutive-decomposition-dilatometer method and the kinetic results were discussed according to the microstructure analysis done by N2 adsorption isotherms (78 K), SEM and FT-IR measurements. Below 1000 °C, CaCO3 particle thermal-decomposition was pseudomorphic, resulting in the formation of a CaO grain porous network. When the CaO grains were formed, the Al3+ diffused among them, producing AlO4 groups that promoted the CaO grain coarsening and reduced O2− surface sites available to CO2 adsorbed molecules to form CO32−. In pure CaO, CO32− diffused through the grain boundary, enhancing Ca2+ and O2− mobility; AlO4 groups reduced CO32− penetration and CaO sintering rate. Above 1000 °C, the sintering rate of the doped samples exceeded that of the undoped, likely because of Al3+ diffusion in CaO and viscous flow.  相似文献   

6.
MgTa2O6 powders were prepared by mechanochemical synthesis from MgO and Ta2O5 in a planetary ball mill in air atmosphere using steel vial and steel balls. High-energy ball milling gave nearly single-phase MgTa2O6 after 8 h of milling time. Annealing of high-energy milled powder at various temperatures (700–1200 °C) indicated that high-energy milling speed up the formation and crystallization of MgTa2O6 from the amorphous mixture. The powder derived from 8 h of mechanical activation gave a particle size of around 28 nm. Although at low-annealing temperatures the grain size was almost the same as-milled powder, the grain size increased with annealing temperature reaching to around 1–2 μm after annealing at 1200 °C for 8 h.  相似文献   

7.
The carbonation characteristics of pure CaO derived from nano-sized CaCO3 were investigated as part of a multi-cycle performance study which showed potential for exploiting the properties of nano-sized CaO sorbents in a continuous CO2 capture-and-release process. To help understand the approach to the decay asymptote, which is established through multiple capture-and-release cycles, a qualitative model was proposed. The rate of approach and residual conversion defined by the decay asymptote represents the establishment of an equilibrium between the pore volume and surface area loss during thermal sintering; and the pore volume and surface area regeneration as a consequence of a solid-state diffusion mechanism, and the subsequent release of CO2 in the next calcination cycle. This qualitative explanation is valid for all CaO derived CO2 sorbents.  相似文献   

8.
Serrated leaf-like CaTi2O4(OH)2 nanoflake crystals were synthesized via a template-free and surfactant-free hydrothermal process. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth process for CaTi2O4(OH)2 nanoflakes was dominated by a crystallization–dissolution–recrystallization growth mechanism. BET analysis showed that CaTi2O4(OH)2 nanoflakes had mesoporous structure with an average pore size of 8.7 nm, and a large surface area of 88.4 m2 g−1. Cyclic voltammetry and galvanostatic charge–discharge tests revealed that the electrode synthesized from CaTi2O4(OH)2 nanoflakes reached specific capacitances of 162 F g−1 at the discharge current of 2 mA cm−2, and also exhibited excellent electrochemical stability.  相似文献   

9.
Ni modified K2CO3/MoS2 catalyst was prepared and the performance of higher alcohol synthesis catalyst was investigated under the conditions: T = 280–340 °C, H2/CO (molar radio) = 2.0, GHSV = 3000 h 1, and P = 10.0 MPa. Compared with conventional K2CO3/MoS2 catalyst, Ni/K2CO3/MoS2 catalyst showed higher activity and higher selectivity to C2+OH. The optimum temperature range was 320–340 °C and the maximum space-time yield (STY) of alcohol 0.30 g/ml h was obtained at 320 °C. The selectivity to hydrocarbons over Ni/K2CO3/MoS2 was higher, however, it was close to that of K2CO3/MoS2 catalyst as the temperature increased. The results indicated that nickel was an efficient promoter to improve the activity and selectivity of K2CO3/MoS2 catalyst.  相似文献   

10.
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%.  相似文献   

11.
The value of critical current density at 77 K in “zero” applied field (Jc) characterizing the superconducting state for YBa2Cu3O7−δ ceramics is closely related to the microstructure.The interrelationships between the microstructural factors such as pore volume fraction, oxygen content, average grain size, are complex. However, these factors also influence the normal state resistivity measured at room temperature (ρ300). We demonstrate how the current carrying cross section influences Jc and ρ300 in a similar way. Data, reported for two classes of YBa2Cu3O7−δ: small grain porous ceramics and larger-grain denser ceramics, reveal an approximate linear relation between ρ300 K and Jc. Extrapolation of this relation to a fully dense small grain YBa2Cu3O7−δ ceramic yields values of ρ300 = 0.4 mΩ cm and Jc = 103 A cm−2.  相似文献   

12.
Spherical (Ni0.5Mn0.5)(OH)2 with different secondary particle size (3 μm, 10 μm in diameter) was synthesized by co-precipitation method. Mixture of the prepared hydroxide and lithium hydroxide was calcined at 950 °C for 20 h in air. X-ray diffraction patterns revealed that the prepared material had a typical layered structure with space group. Spherical morphologies with mono-dispersed powders were observed by scanning electron microscopy. It was found that the layered Li[Ni0.5Mn0.5]O2 delivered an initial discharge capacity of 148 mAh g−1 (3.0-4.3 V) though the particle sizes were different. Li[Ni0.5Mn0.5]O2 having smaller particle size (3 μm) showed improved area specific impedance due to the reduced Li+ diffusion path, compared with that of Li[Ni0.5Mn0.5]O2 possessing larger particle size (10 μm). Although the Li[Ni0.5Mn0.5]O2 (3 μm) was electrochemically delithiated to Li0.39[Ni0.5Mn0.5]O2, the resulting exothermic onset temperature was around 295 °C, of which the value is significantly higher than that of highly delithiated Li1−δCoO2 (∼180 °C).  相似文献   

13.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

14.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

15.
C.J. Liu  G.X. Wang  S.X. Sang 《Fuel》2010,89(10):2665-2672
Pore structure changing of coal during the CO2 geo-sequestration is one of the key issues that affect the sequestration process significantly. To address this problem, the CO2 sequestration process in an anthracite coal was replicated using a supercritical CO2 (ScCO2) reactor. Different coal grain sizes were exposed to ScCO2 and water at around 40 °C and 9.8 MPa for 72 h. Helium pycnometer and mercury porosimetry provide the density, pore size distribution and porosity of the coal before and after the ScCO2 treatment. The results show that after exposure to the ScCO2-H2O reaction, part of the carbonate minerals were dissolved and flushed away by water which made the true density increased as well as total pore volume and porosity most importantly in the micro-pore range. Hysteresis between mercury intrusion and extrusion was observed. Ink bottle shaped pores can be either damaged or created compared with the ScCO2 treated coal samples. This suggests that the ScCO2 treatment most likely increase the volumes of pores in anthracite coal, which also contributed to the increase in porosity of the treated samples. Therefore the CO2 sequestration into coal appears to have the potential to increase significantly the anthracite microporosity which is very advantageous for CO2 storage.  相似文献   

16.
Adsorption is considered a promising method for carbon capture. CO2 adsorbents take a variety of forms - but one approach is to fill mesoporous substrates with a polymeric CO2 selective sorbent. SBA-15 and mesocellular siliceous foam (MCF) are high pore volume, high surface area ordered mesoporous materials for which modification with amine should result in high capacity, highly selective adsorbents. SBA-15 and MCF were separately loaded with approximately one pore volume equivalent of linear polyethyleneimine (PEI) (Mw = 2500) or branched PEI (Mn = 1200). CO2 adsorption/desorption isotherms under dry CO2 were obtained at 75, 105 and 115 °C. The CO2 adsorption/desorption kinetics were improved with temperature, though the CO2 capacities generally decreased. The adsorption capacity for MCF loaded with branched PEI at 105 and 115 °C were 151 and 133 mg/g adsorbent, respectively (in 50% CO2/Ar, 20 min adsorption time). These are significantly higher than the adsorption capacity observed for SBA-15 loaded with branched PEI under same conditions, which were 107 and 83 mg/g adsorbent, respectively. Thus the results indicate that, on a unit mass basis, amine modified MCF's are potentially better adsorbents than amine modified SBA-15 for CO2 capture at modestly elevated temperature in a vacuum swing adsorption process.  相似文献   

17.
In the present work the behaviour of HAp extracted from pig bones at elevated temperatures up to 1000 °C in O2 and CO2 atmospheres has been studied. It has been found that CO2 atmosphere arrests HAp decomposition. Chemical analysis and infrared spectroscopy reveal that no free CaO appears and no decrease of CO3−2 group concentration occurs in the material calcined in CO2 atmosphere. In the O2 atmosphere at elevated temperatures, CaO and CO2 are emitted from the samples, although the remaining material retains the HAp structure as indicated by the X-ray diffraction.  相似文献   

18.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

19.
Ba2SnYO5.5 nanopowders were synthesized by a gel polymerization method. In this process, a gel containing Ba, Sn and Y cations has been obtained by the polymerization of acrylic acid using N,N′-methylene bis-acrylamide as a cross-linking reagent and hydrogen peroxide as an igniting reagent. The gel was calcined at 1200 °C, giving rise to the Ba2SnYO5.5 single-phase nanopowders with the grain size ranging from 50 nm to 70 nm. Nanopowders were sintered at 1150 °C by spark plasma sintering (SPS) to obtain dense nanostructure materials (> 95%) containing grains whose size ranges between 70 nm and 100 nm. Nanostructured Ba2SnYO5.5 shows a good chemical stability in wet atmosphere. However, its protonic conductivity decreases compared with that of microcrystallin Ba2SnYO5.5 ceramics.  相似文献   

20.
Oxidation of bulk samples of 〈Al〉 by water and H2O/CO2 mixture at sub- and supercritical conditions for uniform temperature increase and at the injection of H2O (665 K, 23.1 MPa) and H2O/CO2 (723 K, 38.0 MPa) fluids into the reactor has been studied. Transition of 〈Al〉 into AlOOH and Al2O3 nanoparticles has been found out. Aluminum samples oxidized by H2O and H2O/CO2 fluids at the injection mostly consist of large particles (300-500 nm) of α-Al2O3. Those oxidized for uniform temperature increase contain smaller particles (20-70 nm) of γ-Al2O3 as well. Mechanism of this phenomenon is explained by orientation of oxygen in H2O polar molecules to the metal in the electric field of contact voltage at Al/AlOOH and Al/Al2O3 boundary. Addition of CO2 to water resulted in CO, CH4, CH3OH and condensed carbon, increase in size of Al2O3 nanoparticles and significant decrease in time delay. In pure CO2 〈Al〉 oxidation resulted in oxide film. Using temperature and time dependences of gaseous reactant pressure and Redlich-Kwong state equation, kinetics of H2 formation has been described and oxidation regularities determined. At aluminum oxidation by H2O and H2O/CO2 fluids, self-heating of the samples followed by oxidation rate increase has been registered. The samples of oxidized aluminum have been studied with a transmission electronic microscope, a thermal analyzer and a device for specific surface measurement. The effect of oxidation conditions on the characteristics of synthesized nanoparticles has been found out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号