首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carbonated water injection (CWI) is known as an efficient technique for both CO2 storage and enhanced oil recovery (EOR). During CWI process, CO2 moves from the water phase into the oil phase and results in oil swelling. This mechanism is considered as a reason for EOR. Viscous fingering leading to early breakthrough and leaving a large proportion of reservoir un-swept is known as an unfavorable phenomenon during flooding trials. Generally, instability at the interface due to disturbances in porous medium promotes viscous fingering phenomenon. Connate water makes viscous fingers longer and more irregular consisting of large number of tributaries leading to the ultimate oil recovery reduction. Therefore, higher in-situ water content can worsen this condition. Besides, this water can play as a barrier between oil and gas phases and adversely affect the gas diffusion, which results in EOR reduction. On the other hand, from gas storage point of view, it should be noted that CO2 solubility is not the same in the water and oil phases. In this study for a specified water salinity, the effects of different connate water saturations (Swc) on the ultimate oil recovery and CO2 storage capacity during secondary CWI are being presented using carbonate rock samples from one of Iranian carbonate oil reservoir. The results showed higher oil recovery and CO2 storage in the case of lower connate water saturation, as 14% reduction of Swc resulted in 20% and 16% higher oil recovery and CO2 storage capacity, respectively.  相似文献   

2.
The world's dependence on heavy oil production is on the rise as the existing conventional oil reservoirs mature and their production decline. Compared to conventional oil, heavy oil is much more viscous and hence its production is much more difficult. Various thermal methods and particularly steam injection are applied in the field to heat up the oil and to help with its flow and production. However, the thermal recovery methods are very energy intensive with significant negative environmental impact including the production of large quantities of CO2. Alternative non-thermal recovery methods are therefore needed to allow heavy oil production by more environmentally acceptable methods. Injection of CO2 in heavy oil reservoirs increases oil recovery while eliminating negative impacts of thermal methods.In this paper we present the results of a series of micromodel and coreflood experiments carried out to investigate the performance of CO2 injection in an extra-heavy crude oil as a method for enhancing heavy oil recovery and at the same time storing CO2. We reveal the pore-scale interactions of CO2-heavy oil-water and quantify the volume of CO2 which can be stored in these reservoirs.The results demonstrate that CO2 injection can provide an effective and environmentally friendly alternative method for heavy oil recovery. CO2 injection can be used independently or in conjunction with thermal recovery methods to reduce their carbon footprint by injecting the CO2 generated during steam generation in the reservoirs rather than releasing it in the atmosphere.  相似文献   

3.
Storage of carbon dioxide (CO2) in hydrocarbon reservoirs and saline aquifers is considered as one of the promising mitigation strategies to reduce the negative impact of this greenhouse gas. The static and dynamic behaviour of CO2 in these storage sites which are located at various depths and geographical locations, affects the efficiency of this strategy. Understanding the impact of the conditions of these storage sites on mechanisms involved in CO2 flow, displacement and trapping is also critical for the purpose of site selection and the design of CO2 storage projects. In this paper we report the results of a series of CO2 injection (CO2I) flow visualisation (micromodel) experiments conducted using high-pressure transparent porous media representing various aquifer and depleted oil reservoirs storage conditions. The impact of pertinent parameters on the interaction between the stored CO2 and the reservoir fluids were investigated. Both sub-critical and supercritical CO2 were used to investigate the effect of pressure (depth) of the storage site on CO2 trapping mechanisms. A faster CO2 breakthrough (BT) was observed in the micromodel test simulating CO2I into depleted oil reservoirs, compared to that into aquifers, reducing the sequestration capacity of the depleted oil reservoirs. Compared to the injection of supercritical CO2, the BT of gaseous CO2 happened faster, adversely affecting the CO2 displacement performance. The results of these direct flow visualization experiments significantly improve our understanding of the complex mechanisms and interactions involved in CO2I and storage in geological formations. This knowledge is essential for identifying storage conditions that would lead to maximising CO2 storage capacity, for better understanding the ultimate fate of the stored CO2 and the storage safety.  相似文献   

4.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

5.
Essential oil was extracted from yarrow flowers (Achillea millefolium) with supercritical CO2 at pressure of 10 MPa and temperatures of 40–60 °C, and its composition and yield were compared with those of hydrodistillate. The yield of total extract, measured in dependence on extraction time, was affected by extraction temperature but not by particle size of ground flowers. CO2-extraction of cuticular waxes was lowest at 60 °C. Major essential oil components were camphor (26.4% in extract, 38.4% in distillate), 1,8-cineole (9.6% in extract, 16.2% in distillate), bornyl acetate (16.7% in extract, 4.3% in distillate), γ-terpinene (9.0% in extract, 9.4% in distillate), and terpinolene (7.6% in extract, 3.9% in distillate). Compared to hydrodistillation, the yield of monoterpenes was lower due to their incomplete separation from gaseous CO2 in trap but the yield of less volatile components like monoterpene acetates and sesquiterpenes was higher. Hydrolysis of γ-terpinene and terpinolene, occuring in hydrodistillation, was suppressed in supercritical extraction, particularly at extraction temperature of 40 °C.  相似文献   

6.
Wen Cao  Danxing Zheng   《Fuel》2007,86(17-18):2864-2870
This paper proposes a novel power cycle system composed of chemical recuperative cycle with CO2–NG (natural gas) reforming and an ammonia absorption refrigeration cycle. In which, the heat is recovered from the turbine exhaust to drive CO2–NG reformer firstly, and then lower temperature heat from the turbine exhaust is provided with the ammonia absorption refrigeration system to generate chilled media, which is used to cool the turbine inlet gas except export. In this paper, a detailed thermodynamic analysis is carried out to reveal the performance of the proposed cycle and the influence of key parameters on performance is discussed. Based on 1 kg s−1 of methane feedstock and the turbine inlet temperature of 1573 K, the simulation results shown that the optimized net power generation efficiency of the cycle rises up to 49.6% on the low-heating value and the exergy efficiency 47.9%, the new cycle system reached the net electric-power production 24.799 MW, the export chilled load 0.609 MW and 2.743 kg s−1 liquid CO2 was captured, achieved the goal of CO2 and NOx zero-emission.  相似文献   

7.
Enhanced oil recovery (EOR) methods are mostly based on different phenomena taking place at the interfaces between fluid–fluid and rock–fluid phases. Over the last decade, carbonated water injection (CWI) has been considered as one of the multi-objective EOR techniques to store CO2 in the hydrocarbon bearing formations as well as improving oil recovery efficiency. During CWI process, as the reservoir pressure declines, the dissolved CO2 in the oil phase evolves and gas nucleation phenomenon would occur. As a result, it can lead to oil saturation restoration and subsequently, oil displacement due to the hysteresis effect. At this condition, CO2 would act as in-situ dissolved gas into the oil phase, and play the role of an artificial solution gas drive (SGD).In this study, the effect of SGD as an extra oil recovery mechanism after secondary and tertiary CWI (SCWI-TCWI) modes has been experimentally investigated in carbonate rocks using coreflood tests. The depressurization tests resulted in more than 25% and 18% of original oil in place (OOIP) because of the SGD after SCWI and TCWI tests, respectively. From the ultimate enhanced oil recovery point of view, the efficiency of SGD was observed to be more than one-third of that of CWI itself. Furthermore, the pressure drop data revealed that the system pressure depends more on the oil production pattern than water production.  相似文献   

8.
Oxygen storage capacity (OSC) of CeO2–ZrO2 solid solution, CexZr(1−x)O4, is one of the most contributing factors to control the performance of an automotive catalyst. To improve the OSC, heat treatments were employed on a nanoscaled composite of Al2O3 and CeZrO4 (ACZ). Reductive treatments from 700 to 1000 °C significantly improved the complete oxygen storage capacity (OSC-c) of ACZ. In particular, the OSC-c measured at 300 °C reached the theoretical maximum with a sufficient specific surface area (SSA) (35 m2/g) after reductive treatment at 1000 °C. The introduced Al2O3 facilitated the regular rearrangement of Ce and Zr ions in CeZrO4 as well as helped in maintaining the sufficient SSA. Reductive treatments also enhanced the oxygen release rate (OSC-r); however, the OSC-r variation against the evaluation temperature and the reduction temperature differed from that of OSC-c. OSC-r measured below 200 °C reached its maximum against the reduction temperature at 800 °C, while those evaluated at 300 °C increased with the reduction temperature in the same manner as OSC-c.  相似文献   

9.
The corrosion behavior of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 was investigated using weight-loss measurements. As a comparison, the instantaneous corrosion rate in the early stages for iron in the same corrosion environment was measured by resistance relaxation method. Surface analyzes using SEM/EDS, XRD and XPS were applied to study the morphology and chemical composition of the corroded sample surface. Weight-loss method results showed that the corrosion rate of X70 steel samples increased with SO2 concentration, while the corrosion rate increased before decreasing with SO2 concentration for iron sample. Comparing resistance relaxation method results with weight-loss method results, it is found that the instantaneous corrosion rate of iron is much higher than the uniform corrosion rate of the iron tablet specimens which are covered with thick corrosion product films after a long period of corrosion. The corrosion product films were mainly composed of FeSO4 and FeSO3 hydrates. The possible reaction mechanism under such environment was also analyzed, and the electrochemical reaction between the dissolved SO2 in the condensed water film with iron is the critical reaction step.  相似文献   

10.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included.  相似文献   

11.
This work investigates the improvement of Ni/Al2O3 catalyst stability by ZrO2 addition for H2 gas production from CH4/CO2 reforming reactions. The initial effect of Ni addition was followed by the effect of increasing operating temperature to 500–700 °C as well as the effect of ZrO2 loading and the promoted catalyst preparation methods by using a feed gas mixture at a CH4:CO2 ratio of 1:1.25. The experimental results showed that a high reaction temperature of 700 °C was favored by an endothermic dry reforming reaction. In this reaction the deactivation of Ni/Al2O3 was mainly due to coke deposition. This deactivation was evidently inhibited by ZrO2, as it enhances dissociation of CO2 forming oxygen intermediates near the contact between ZrO2 and nickel where the deposited coke is gasified afterwards. The texture of the catalyst or BET surface area was affected by the catalyst preparation method. The change of the catalyst texture resulted from the formation of ZrO2–Al2O3 composite and the plugging of Al2O3 pore by ZrO2. The 15% Ni/10% ZrO2/Al2O3 co-impregnated catalyst showed a higher BET surface area and catalytic activity than the sequentially impregnated catalyst whereas coke inhibition capability of the promoted catalysts prepared by either method was comparable. Further study on long-term catalyst stability should be made.  相似文献   

12.
Pulverized coal combustion in O2/N2 and O2/CO2 environments was investigated with a drop tube furnace. Results present that the reaction rate and burn-out degree of O2/CO2 chars (obtained in O2/CO2 environments) are lower than that of O2/N2 chars (obtained in O2/N2 environments) under the same experimental condition. It indicates that a higher O2 concentration in O2/CO2 environment is needed to achieve the similar combustion characteristic to that in O2/N2 environment. The main differences between O2/N2 and O2/CO2 chars rely on the pore structure determined by N2 adsorption and chemical structure measured by FT-IR. For O2/CO2 char, the surface is thick and the pores are compact which contribute to the fragmentation reduction of particles burning in O2/CO2 environment. The organic functional group elimination rate from the surface of O2/CO2 chars is slower or delayed. The present research results might have important implications for further understanding the intrinsic kinetics of pulverized coal combustion in O2/CO2 environment.  相似文献   

13.
14.
The porosity evolution in heavy oil fly ashes subjected to activation with CO2 has been examined. The work examined four different heavy oil fly ashes that, after preliminary acid leaching, have been pyrolyzed at 900 °C and then activated with CO2 at the same temperature for different times.A different evolution of porosity was observed according to the different reactivity of the samples during activation. The activated samples have been characterised as regards the surface area and the pore volume. The scanning electron microscope-energy dispersive spectrometer microanalysis has been used to interpret the experimental results.  相似文献   

15.
Mixed gases injection into a large coal sample for CO2 sequestration in coals and enhanced coalbed methane recovery was investigated using a new numerical approach. A dynamic multi-component transport (DMCT) model was applied to simulate ternary gas (CH4-CO2-N2) diffusion and flow behaviors for better understanding and prediction of gas injection enhanced coalbed methane (ECBM) recovery processes. Several cases were designed to analyze the effects of injection gas composition and pressure on gas displacement dynamics in a large coal sample. The calculated results suggest that mixed gas injections have similar profiles of methane recovery as pure N2 injection, and mixtures of N2 and CO2 reduce the ultimate methane recovery compared to pure CO2. The breakthrough time of pure CO2 injection is longer than mixed gas injections. Injection gas composition has significant effect on produced gas composition.  相似文献   

16.
油气田CO2/H2S共存腐蚀与缓蚀技术研究进展   总被引:3,自引:0,他引:3  
CO2/H2S是油气田采集、运输、处理过程中主要的腐蚀介质,由其引起的管道设备的腐蚀问题变得越来越严重,腐蚀和防腐已经成为研究热点。分别对近年来国内外开展的有关CO2和H2S共存腐蚀及缓蚀技术的研究进行综述。CO2/H2S共存腐蚀研究主要依靠试验手段,但目前的研究结果有很大的离散性,根据不同的试验条件会产生不同的研究结果。分压比是国内外大多数学者研究CO2/H2S腐蚀规律的切入点,但关于两者主导腐蚀的分压比界限划分现有研究存有争议。缓蚀技术研究讨论了缓蚀剂作用机理,评述了抑制CO2/H2S共存腐蚀常用的酰胺类、咪唑啉衍生物类、季铵盐类和Schiff碱类缓性剂在国内外的研究与应用现状,展望了这一领域的研究前景及发展方向。  相似文献   

17.
CO2 capture by adsorption with nitrogen enriched carbons   总被引:2,自引:0,他引:2  
M.G. Plaza 《Fuel》2007,86(14):2204-2212
The success of CO2 capture with solid sorbents is dependent on the development of a low cost sorbent with high CO2 selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO2 capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO2 physisorption, thus decreasing the capacity of raw carbon at room temperature.  相似文献   

18.
Oxidation of bulk samples of 〈Al〉 by water and H2O/CO2 mixture at sub- and supercritical conditions for uniform temperature increase and at the injection of H2O (665 K, 23.1 MPa) and H2O/CO2 (723 K, 38.0 MPa) fluids into the reactor has been studied. Transition of 〈Al〉 into AlOOH and Al2O3 nanoparticles has been found out. Aluminum samples oxidized by H2O and H2O/CO2 fluids at the injection mostly consist of large particles (300-500 nm) of α-Al2O3. Those oxidized for uniform temperature increase contain smaller particles (20-70 nm) of γ-Al2O3 as well. Mechanism of this phenomenon is explained by orientation of oxygen in H2O polar molecules to the metal in the electric field of contact voltage at Al/AlOOH and Al/Al2O3 boundary. Addition of CO2 to water resulted in CO, CH4, CH3OH and condensed carbon, increase in size of Al2O3 nanoparticles and significant decrease in time delay. In pure CO2 〈Al〉 oxidation resulted in oxide film. Using temperature and time dependences of gaseous reactant pressure and Redlich-Kwong state equation, kinetics of H2 formation has been described and oxidation regularities determined. At aluminum oxidation by H2O and H2O/CO2 fluids, self-heating of the samples followed by oxidation rate increase has been registered. The samples of oxidized aluminum have been studied with a transmission electronic microscope, a thermal analyzer and a device for specific surface measurement. The effect of oxidation conditions on the characteristics of synthesized nanoparticles has been found out.  相似文献   

19.
This paper provides an exergy analysis of the multistage refrigeration cycle used for Ethane and heavier hydrocarbons (C2+) recovery plant. The behavior of an industrial refrigeration cycle with propane refrigerant has been investigated by the exergy method. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 43.45% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of temperature-entropy (T-S) and pressure-enthalpy (P-H) diagrams where coefficient of performance (COP) was obtained as 1.87. The novelty of this article includes the effect and sensitivity analysis of pressure drop and temperature on the exergy efficiency and coefficient of performance of the cycle.  相似文献   

20.
In order to reduce the CO2 emission from the coal-fired power plants, O2/CO2 recycle combustion (Oxy-combustion) technique has been proposed through combining a conventional combustion process with a cryogenic air separation process. The technique is capable of enriching CO2 concentration and then allowing CO2 sequestration in an efficient and energy-saving way. Taking into account the CO2 taxation and CO2 sale, the paper evaluates the economic feasibility of Oxy-combustion plants retrofitted from two typical existing conventional coal-fired power plants (with capacities of 2 × 300 MW and 2 × 600 MW, respectively) with Chinese data. The cost of electricity (COE) and the CO2 avoidance cost (CAC) are also considered in the evaluation. The COE of the retrofitted Oxy-combustion plant is nearly the same as that of the corresponding conventional plant if the unit price of CO2 sale reaches 17-22 $/t (different cases). The CAC of the retrofitted 2 × 300 MW Oxy-combustion plant is 1-3 $/t bigger than that of the retrofitted 2 × 600 MW Oxy-combustion plant. Supercritical plants are more economical and appropriate for Oxy-combustion retrofit. The result indicates that Oxy-combustion technique is not only feasible for CO2 emission control based on existing power plants but is also cost-effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号