首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 67 毫秒
1.
不同污染程度湖泊沉积物中不同粒级可转化态氮分布   总被引:13,自引:4,他引:9  
研究了污染程度不同的五里湖、月湖、东太湖和贡湖不同粒级沉积物中总可转化态氮以及各形态可转化态氮的含量与分布.结果表明:4个湖泊的沉积物各粒级中各形态可转化态氮的含量及其地球化学特征均不相同.强氧化剂可提取态氮(SOEF-N)是释放能力最弱的形态,为可转化态氮的主体,占总可转化态氮的66.97%~87.97%.离子交换态氮(IEF-N)结合能力最弱,是最容易被释放的形态,为可转化态无机氮的主体,占总可转化态氮的7.37%~22.25%.同一粒级中,各形态可转化态氮对氮循环的贡献为SOEF-N最大,IEF-N其次,强碱可浸取态氮(SAEF-N)与弱酸可浸取态氮(WAEF-N)最低.随着沉积物粒级的由粗到细,总可转化态氮以及各形态可转化态氮含量均呈逐渐增加趋势.沉积物细颗粒部分对氮循环的可能贡献占绝对的主体,是粗颗粒部分的几倍到几十倍.相比而言,污染程度轻的贡湖和东太湖沉积物无论总可转化态氮还是各形态可转化态氮,细颗粒部分的相对含量均低于污染程度重的五里湖和月湖沉积物.   相似文献   

2.
选取不同高程鄱阳湖表层沉积物,通过研究其总可转化态氮与各形态可转化态氮含量及分布特征,试图揭示江湖关系变化导致的水位变化对鄱阳湖沉积物氮潜在释放风险的影响.结果表明:1鄱阳湖表层沉积物总氮(TN)含量在389~3 865 mg·kg-1之间,空间分布上呈"五河"入湖尾闾区湖心区北部湖区的趋势;总可交换态氮含量在319.36~904.56 mg·kg-1之间,占TN的52%,空间分布趋势与TN相同;2鄱阳湖3个湖区沉积物各形态可转化态氮的含量大小排列次序均为:SOEF-N(强氧化剂可提取态氮)≈SAEF-N(强碱可提取态氮)WAEF-N(弱酸可提取态氮)IEF-N(离子交换态氮);3江湖关系变化致使鄱阳湖枯水期沉积物出露时间提前并且延长,进而导致不同高程沉积物可转化态氮(TTN)含量差异明显,3个湖区沉积物可转化态氮含量均表现为枯水期丰水期,高程越高,由于其沉积物出露时间较长,可转化态氮含量较高,即可转化态氮含量12 m~13 m高程沉积物11 m~12 m高程沉积物10m~11 m高程沉积物;4随着高程的增加,沉积物各形态可转化态氮含量都呈现增加的趋势,其中SAEF-N和WAEFN含量及其占总可转化态氮的比例变化幅度较小,而IEF-N和SOEF-N含量以及其占总可转化态氮比例的增幅均较为显著.如果江湖关系进一步变化,枯水期水位继续下降,势必会引起沉积物出露面积增大及出露时间延长,从而导致沉积物TN、可转化态氮以及释放风险较高的氮形态IEF-N和SOEF-N含量的增大,来年丰水期可能会增加鄱阳湖沉积物氮释放风险.  相似文献   

3.
为了揭示东部平原骆马湖、高邮湖、滆湖和阳澄湖四个湖泊沉积物中氮的分布特征及其影响因素,采用分级浸取法研究了湖泊表层沉积物中离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱可浸取态氮(SAEF-N)、强氧化剂可浸取态氮(SOEF-N)这四种可转化态氮(TTN)和非转化态氮(NTN)的赋存特征,并结合沉积物...  相似文献   

4.
为识别巢湖及其入湖河流的主要污染特征及其来源,测定了巢湖及其入湖河流34个采样点表层沉积物总氮(TN)、总磷(TP)、无机磷(IP)、有机磷(OP)及有机质(OM)浓度,分析了TN、TP、IP、OP、OM浓度及粒度分布间的相关性。结果表明,巢湖西半湖区沉积物营养盐浓度明显高于东半湖区,巢湖中部沉积物营养盐浓度明显偏低。南淝河沉积物营养盐浓度明显高于其他入湖河流,并在流经合肥市的下游处达到最高值。相关性研究表明,沉积物中TOC与TN,TN与OM,TP与IP表现出显著相关性,表明沉积物中氮主要以有机氮的形态存在,与有机氮相比,沉积物中无机氮浓度相对恒定,沉积物中磷主要以无机磷的形态存在;TN与TP、IP也表现出显著相关性,表明沉积物中氮磷来源具有同源性。随着沉积物粒径的增大,沉积物粒径与TOC、TN、TP、IP的相关性变差。  相似文献   

5.
太滆南运河入湖河口沉积物氮素分布特征   总被引:6,自引:2,他引:6  
为研究入湖河口沉积物中氮素的存在形态和空间分布状况,于2012年4月在太滆南运河入湖河口区采集沉积物柱状样品并对沉积物中的氮素进行了测定分析.结果表明,NH+4-N、TN和Org-N在表层沉积物中的沉积具有一定的同步性.NH+4-N与Org-N、TN均呈显著正相关(P<0.05),Org-N和TN呈极显著正相关(P<0.01);Org-N是入湖河口表层沉积物氮素的主要成分,平均值为2 843.77 mg·kg-1,占TN的质量分数为93.38%;氮素的水平分布存在差异:TN和Org-N的含量在入湖河干流延伸方向上,随距离的增加而逐渐降低,在偏离干流延伸方向上,呈"W"型波动变化.NH+4-N含量在距河口100 m内迅速下降,100 m后在波动中保持低水平.NO-3-N含量在0~800 m内保持平衡,800 m后迅速升高;氮素的垂直分布存在差异:在入湖河干流延伸方向,NH+4-N含量随沉积物深度的增加而升高,NO-3-N呈现出底层富集向表层富集转变的趋势,TN和Org-N的含量自表层向底层富集.  相似文献   

6.
利用化学连续提取法对南四湖湖区及主要入湖河流河口区的表层沉积物样品中的磷的化学形态进行了提取.分析结果表明:南阳湖、独山湖和位于湖西的入湖河流沉积物中总磷含量较高,变化范围为571.67~1113.55mg·kg-1;不同形态磷的含量差异较大,排序为:钙磷(Ca-P)>有机磷(OP)>弱吸附态磷(Ads-P)>铁磷(Fe-P)>铝磷(Al-P);TP与Ca-P、Ads-P、OP之间存在正相关关系,相关系数r分别为0.85(p<0.01)、0.85(p<0.01)和0.63(p<0.01);Ads-P与Ca-P、Ads-P与OP之间也存在正相关关系,r分别为0.74(p<0.01)和0.60(p<0.05);Fe-P与Ca-P之间存在负相关关系(r=-0.62,p<0.05);BAP只与OP之间显著正相关(r=0.82,p<0.01),由OP可以粗略地估算出沉积物中潜在的可释放磷,即有效的内源磷负荷;南四湖沉积物中有机磷的含量很大程度上取决于有机质含量的多少.  相似文献   

7.
洪泽湖不同入湖河流沉积物磷形态特征及生物有效性   总被引:1,自引:0,他引:1  
为揭示洪泽湖入湖河流沉积物磷形态空间差异性及影响因素,分析了洪泽湖自西北向西南7条入湖河流65个表层沉积物中不同磷(P)形态,并探讨了磷形态空间赋存特征的影响因素及环境意义.研究表明:沉积物总磷(TP)含量为488.90mg/kg~960.22mg/kg,无机磷(Pi)为主要形态,相对含量为65.81%~76.16%.西部入湖流域沉积物有机磷(Po)以非活性有机磷(NLOP)为主,汴河最高,相对含量约占Po的50.41%,生物有效态无机磷(BAP)相对含量最高,占Pi的66.84%,污染程度最高;西南和西北入湖流域Po则以中活性有机磷(MLOP)为主,Pi以钙结合态无机磷(HCl-Pi)为主.西北入湖流域由于受当地地质背景的影响,HCl-Pi所占Pi相对含量最高(43.02%),从而减缓了磷的移动能力,污染程度最低.随着沉积物污染程度的增加,生物有效态Po含量增加,但所占Po相对含量降低;HCl-Pi含量增加,所占Pi相对含量降低,这一现象和我国其它典型地区沉积物磷形态空间分布类似.西部和西南入湖流域主要受水土流失、有机面源污染及藻类生长的影响,有机质环境较高,水交换能力弱,可被有机质降解的Po组分高于可被矿化的Po组分,大部分难降解Po组分易沉积,导致西部和西南入湖流域较高的BAP和NLOP含量,富营养化程度较高.沉积物OM是各形态磷之间相互转化的关键因素,和沉积物内源磷地球生物化学循环密切相关.洪泽湖入湖流域沉积物磷形态空间差异性主要由农业面源污染物的输入而导致内源磷负荷加剧.洪泽湖西部和西南入湖流域应重点控制农田水土流失及养殖业面源污染,建设滨岸修复带,遵循少量多次增施有机肥原则,减少农用地水土流失.健全农村养殖业废水废渣处理;划定科学养殖区;提倡铜围网箱,增加水体交换率.而对于洪泽湖西北入湖流域则应重点防止过度城镇化带来的水土流失及对生态功能保护区过高的污染负荷.  相似文献   

8.
为揭示洪泽湖入湖河流沉积物磷形态空间差异性及影响因素,分析了洪泽湖自西北向西南7条入湖河流65个表层沉积物中不同磷(P)形态,并探讨了磷形态空间赋存特征的影响因素及环境意义.研究表明:沉积物总磷(TP)含量为488.90mg/kg~960.22mg/kg,无机磷(Pi)为主要形态,相对含量为65.81%~76.16%.西部入湖流域沉积物有机磷(Po)以非活性有机磷(NLOP)为主,汴河最高,相对含量约占Po的50.41%,生物有效态无机磷(BAP)相对含量最高,占Pi的66.84%,污染程度最高;西南和西北入湖流域Po则以中活性有机磷(MLOP)为主,Pi以钙结合态无机磷(HCl-Pi)为主.西北入湖流域由于受当地地质背景的影响,HCl-Pi所占Pi相对含量最高(43.02%),从而减缓了磷的移动能力,污染程度最低.随着沉积物污染程度的增加,生物有效态Po含量增加,但所占Po相对含量降低;HCl-Pi含量增加,所占Pi相对含量降低,这一现象和我国其它典型地区沉积物磷形态空间分布类似.西部和西南入湖流域主要受水土流失、有机面源污染及藻类生长的影响,有机质环境较高,水交换能力弱,可被有机质降解的Po组分高于可被矿化的Po组分,大部分难降解Po组分易沉积,导致西部和西南入湖流域较高的BAP和NLOP含量,富营养化程度较高.沉积物OM是各形态磷之间相互转化的关键因素,和沉积物内源磷地球生物化学循环密切相关.洪泽湖入湖流域沉积物磷形态空间差异性主要由农业面源污染物的输入而导致内源磷负荷加剧.洪泽湖西部和西南入湖流域应重点控制农田水土流失及养殖业面源污染,建设滨岸修复带,遵循少量多次增施有机肥原则,减少农用地水土流失.健全农村养殖业废水废渣处理;划定科学养殖区;提倡铜围网箱,增加水体交换率.而对于洪泽湖西北入湖流域则应重点防止过度城镇化带来的水土流失及对生态功能保护区过高的污染负荷.  相似文献   

9.
研究了长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征结果表明:①14个沉积物的总氮(TN)含量为768.5~5190 6 mg·kg-1之间,以月湖沉积物TN含量最高,是其它各湖泊沉积物TN含量的2~7倍;可交换态氮(EN)含量为150.92~341.98mg·kg-1,占TN的6.29%~19.64%;固定态铵(F-NH4)含量变化在186 5~462.5mg·kg-1,占TN的8.40%~35.02%.②EN以NH 4-N为主,NO-3-N其次,NO-2-N最低,分别占EN的74.61%~85.85%、13.93%~25.15%和0.17%~0.27%.③EN、NH 4-N、NO-3-N及NO-2-N之间在α=0.01时互为显著正相关,F-NH4与EN、NH 4-N在α=0.05时显著正相关,而与NO-3-N、NO-2-N不相关.④在α=0.01或α=0.05时,EN、NH 4-N、NO-3-N、NO-2-N和F-NH4分别与总氮(TN)、总磷(TP)、有机碳(TOC)、阳离子代换量(CEC)、粉沙粒(Silt)及粘粒(Clay)含量有显著正相关关系,与粗砂粒(Sand)含量有显著负相关关系.除此之外,F-NH4与CaO、Fe2O3和Al2O3均有显著正相关关系.  相似文献   

10.
为探究洪泽湖不同区域沉积物中各形态氮的分布特征及影响因素,文章采用分级浸取的方法将沉积物中氮分为离子交换态氮(IEF-N)、弱酸可浸取态氮(WAEF-N)、强碱浸取态氮(SAEF-N)、强氧化剂浸取态氮(SOEF-N)和非转化态氮(NTN),并运用多元统计分析研究沉积物的理化性质与各形态氮的关系。结果表明:沉积物可转化态氮(TTN)的含量为377.84~1 085.08 mg/kg,均值为765.93 mg/kg,占总氮(TN)的69.76%,是总氮的主要组成部分,洪泽湖沉积物中氮具有较高的潜在释放风险。各类可转化态氮的含量大小顺序为WAEF-N>SOEF-N>SAEF-N>IEF-N。IEF-N与TN的相关性较低,说明沉积物中TN高低并不一定能代表湖泊内源氮污染释放程度的高低。除了IEF-N和SAEF-N,其余形态氮的空间分布特征均与TN一致,即西湖区>成子湖等中部湖区>东部敞水区。TTN、SOEF-N、NTN分别与TOC、TN均具有极显著相关性(p<0.01),IEF-N与TOC、pH均具有显著相关性(p<0.05),粒度与各形态氮之间的相...  相似文献   

11.
对南四湖湖区及其主要入湖河流表层沉积物中金属元素质量分数进行了测试分析. 结果表明,14种金属元素可分为3类组合:Ca和Sr为第Ⅰ组元素;Al,Fe,Na,K,Mg,Ni,V和Ti为第Ⅱ组元素;第Ⅲ组元素包括Zn,Cr,Cu和Pb. 其中,第Ⅰ组元素在独山湖区及微山湖区质量分数较高,与第Ⅱ组元素变化趋势相反,这2组元素主要为流域自然来源;第Ⅲ组元素在老运河、白马河上游、洸府河下游及入湖口沉积物中质量分数较高,可能受到人为污染的影响. 此外,其他表层沉积物中第Ⅱ组元素与第Ⅲ组元素质量分数具有相似的变化规律. 选取流域非耕作土壤样品作为背景,采用参比元素校正及沉积物富集系数法,对Zn,Cr,Cu和Pb等重金属元素的人为污染特征进行了定量评价. 结果显示:老运河沉积物中Cr和Pb的富集系数为3.7和3.9,具有中等程度的人为污染特征.Cu和Zn的富集系数达到16.6和22.0,具备重或严重的人为污染特征.Zn和Cu在洸府河下游及入湖口、白马河上游沉积物中的富集系数为2.0~7.1,具有中等或较重的人为污染特征.其余表层沉积物中Zn,Cr,Cu和Pb的富集系数均低于2.0,基本未受到人为污染的影响.   相似文献   

12.
洱海沉积物中不同形态氮的时空分布特征   总被引:18,自引:5,他引:18  
为揭示沉积物中氮形态变化的影响因素及其生态效应,对洱海表层沉积物中不同形态氮的空间分布和季节性变化特征进行了研究. 结果表明:洱海表层沉积物中w(TN)在2354~6174mg/kg之间,空间分布呈湖区北部>南部>中部的趋势;w(TTN) (TTN为可交换态氮)在1158~2921mg/kg之间,占w(TN)的43%,其分布趋势与w(TN)相同;各形态TTN表现为SOEF-N(强氧化剂可提取态氮,w为974~2515mg/kg)>WAEF-N(弱酸可提取态氮,w为91~210mg/kg)>SAEF-N(强碱可提取态氮,w为38~198mg/kg)>IEF-N(离子交换态氮,w为66~130mg/kg),w(WAEF-N)和w(IEF-N)的分布趋势与w(TTN)相同,w(SAEF-N)中部较高,w(SOEF-N)南部较高. 沉积物中w(TN)和w(NTN)(NTN为非转化态氮)7月较高,TTN及其各形态氮质量分数1月较高. 不同形态氮质量分数随沉积物深度的增加均呈下降趋势,NTN的富集速率高于TN. 洱海沉积物中w(TN)高于长江中下游湖泊,表层TN富集明显. 沉积物氮释放风险较大,但其w(TTN)和w(IEF-N)占w(TN)的比例低于长江中下游湖泊,即洱海沉积物氮释放量小于长江中下游湖泊;洱海沉积物中各形态氮质量分数与w(TOM)均呈显著正相关,与水深呈负相关,显示有机态氮与有机质同步沉积且受外源输入影响较大,w(IEF-N)分布同时受水生植物等影响.   相似文献   

13.
为给进一步实施滇池入湖污染控制及小流域污染治理提供依据,以滇池环湖28条河流入湖水量及水体中不同形态氮的质量浓度逐月调查数据为基础,研究了滇池河流不同形态氮的入湖浓度(ρ)和入湖负荷的时空变化,并探讨了不同形态氮的入湖负荷贡献. 结果表明:①滇池河流入湖ρ(TN)在2.91~94.01 mg/L之间,以ρ(DIN)(DIN为溶解性无机氮)最高,而ρ(DON)(DON为溶解性有机氮)和ρ(PN)(PN为颗粒态氮)均较低. ②滇池河流氮入湖负荷总量为6 908.47 t/a,绝大多数河流以DIN负荷为主,平均贡献为67.15%;DON和PN入湖负荷贡献相近,平均分别为17.86%和14.99%. ③不同形态氮入湖负荷贡献的季节性差异明显,DIN入湖负荷较高值出现在春夏季(3—9月),平均贡献达74.01%;DON入湖负荷较高值则出现在秋冬季(9月—翌年1月),平均贡献达33.42%;PN入湖负荷贡献月份变化差异较小,最高值出现在2月,贡献为40.19%. ④滇池河流氮入湖负荷不仅要考虑DIN的贡献,也应重视DON和PN负荷,控制滇池河流氮入湖负荷需要考虑不同河流不同形态氮负荷组成及其季节性差异,有针对性地采取相应措施.   相似文献   

14.
入洱海河流临湖段底泥氮的分布   总被引:2,自引:0,他引:2       下载免费PDF全文
于2013年7月在洱海流域采集了17条主要入洱海河流临湖段的底泥和上覆水样品,测定分析样品中TN、NH3-N和NO3--N的含量,揭示底泥中氮素的分布特征,并探讨底泥与上覆水中氮素含量的相关性. 结果表明:①17条入洱海河流临湖段底泥中w(TN)为23.10~310.60 mg/kg,平均值为141.66 mg/kg. ②对w(TN)有显著性差异的河流进行分组,并按照w(TN)由低到高排序为清碧溪、双鸳溪<白石溪<灵泉溪、龙溪、阳溪<桃溪、梅溪、隐仙溪、弥苴河<莫残溪、波罗江<永安江<锦溪<中和溪、罗时江、白鹤溪. 其中,各组之内河流间w(TN)无显著差异,而各组之间w(TN)差异显著(P=0.05). ③底泥中w(NH3-N)、w(ON)与w(TN)呈极显著正相关,氮存在形态以ON为主. 其中,“北三江”临湖段底泥的厌/缺氧程度高,底泥中w(NO3--N)占w(TN)的比例明显低于西部入洱海河流;上覆水中ρ(TN)与底泥中w(TN)、w(ON)呈极显著正相关.   相似文献   

15.
洱海沉积物中不同形态磷的时空分布特征   总被引:11,自引:2,他引:11  
为揭示洱海沉积物磷形态变化的影响因素及其内源磷负荷状况,研究了洱海沉积物中不同形态磷的空间分布和季节性变化特征. 结果表明,洱海表层沉积物中w(TP)为418.71~1108.34mg/kg,空间分布总体呈中部湖区>南部湖区>北部湖区;w(IP)为302.35~871.00mg/kg,分布趋势与w(TP)相同;w(Fe/Al-P)为36.22~406.40mg/kg,与w(IP)分布趋势相同;w(Ca-P)为172.34~420.38mg/kg,北部最高;Fe/Al-P和Ca-P是IP的主要形态. 夏季(7月)w(TP)、w(IP)和w(Fe/Al-P)升高,w(labile-P)(labile-P为弱吸附态磷)和w(Fe/Al-P)季节性差异显著. 沉积物柱状样w(TP)、w(OP)、w(labile-P)和w(RSP)(RSP为可还原态磷)随着沉积物深度的增加呈下降趋势,表层富集明显;w(IP)、w(Fe/Al-P)和w(Ca-P)随深度的增加呈上升趋势. 洱海沉积物磷时空分布主要受外源磷输入影响,随水深增加沉积物中w(TP)呈升高趋势,不同形态磷分布受水生生物活动影响较大. 与长江中下游湖泊相比,洱海沉积物中w(TP)高,其中w(IP)及其所占w(TP)的比例较小,磷内源可释放量较低,Fe/Al-P和RSP等生物可利用磷的质量分数及其占w(TP)的比例较大,释放风险较高.   相似文献   

16.
天然沸石覆盖层控制底泥氮磷释放的影响因素   总被引:12,自引:11,他引:12  
通过实验室模拟,研究了天然沸石活性覆盖层控制底泥氮磷释放的影响因素,包括天然沸石粒径、温度、覆盖层厚度以及人工曝气等,结果表明:厌氧状态下富营养化水体的底泥会释放大量的氨氮和总磷,而天然沸石覆盖层可以有效地控制氨氮的释放,并且能降低总磷的释放速率;温度、沸石粒径、覆盖层厚度和曝气对天然沸石覆盖层控制底泥氨氮的短期释放基本没有影响,而沸石粒径和覆盖层厚度对覆盖层控制氨氮的长效性影响较大,且粒径越小或者厚度越厚,控制的时间越长;温度越高,覆盖层抑制底泥总磷释放的效果越差;沸石粒径越小或者覆盖层厚度越厚,控制底泥总磷释放的效果越好;对1cm厚粒径3~5mm沸石覆盖层表面进行曝气,有助于降低底泥总磷的释放速率;而对3cm厚粒径3~5mm的沸石覆盖层表面进行曝气,总磷的控制效果反而下降;对1cm厚粒径<2mm的沸石覆盖层表面进行曝气,初期对于底泥总磷释放的控制是不利的,而后期则可以降低底泥总磷的释放速率.  相似文献   

17.
鄱阳湖入湖河流氮磷水质控制限值研究   总被引:1,自引:1,他引:1       下载免费PDF全文
鄱阳湖近年氮磷营养物浓度逐步升高,入湖河流是鄱阳湖氮磷输入的重要途径.采用BATHTUB模型建立了鄱阳湖入湖河流与湖区ρ(TP)、ρ(TN)的响应关系,模拟了入湖河流执行GB 3838—2002《地表水环境质量标准》中不同氮磷标准限值对湖区水质的影响,发现当入湖河流ρ(TP)执行河流Ⅲ类标准限值或超过Ⅲ类标准限值时,对应湖区ρ(TP)超标;入湖河流执行Ⅲ类及以上湖泊水质标准限值时,湖区水质可以达到Ⅲ类保护目标,但对入湖河流存在一定的过保护现象.因此,以满足现行湖泊水质达标为情景,以湖泊ρ(TP)、ρ(TN)各类别标准限值为目标,试算了入湖河流氮磷控制限值,提出了鄱阳湖入湖河流的氮磷控制限值建议方案,其中鄱阳湖湖体水质目标为Ⅲ类时,入湖河流ρ(TP)、ρ(TN)控制限值分别为0.075和1.20 mg/L,此时入湖河流氮磷控制限值方案既能保证湖泊水质达标,又不会造成对河流的水质控制过于严格.研究显示,基于湖泊水环境质量达标情况试算的入湖河流氮磷所需控制限值,建议可作为解决入湖氮磷污染控制问题的参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号