首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Zinc-substituted cobalt ferrites, Co1–xZnxFe2O4, were for the first time successfully prepared by forced hydrolysis method. The obtained materials are single phase, monodispersed nanocrystalline with an average grain size of about 3 nm. These materials are superparamagnetic at room temperature and ferrimagnetic at temperature lower than the blocking temperature. When the zinc substitution increases from x=0 to 0.4, at 4.2 K, the saturation magnetization increases from 72.1 to 99.7 emu/g. The high saturation magnetization of these samples suggests that this method is suitable for preparing high-quality nanocrystalline magnetic ferrites for practical applications.  相似文献   

2.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

3.
A chemical spray pyrolysis technique for deposition of p-type Mg-doped CuCrO2 transparent oxide semiconductor thin films using metaloorganic precursors is described. As-deposited films contain mixed spinel CuCr2O4 and delafossite CuCrO2 structural phases. Reduction in spinel CuCr2O4 fraction and formation of highly crystalline films with single phase delafossite CuCrO2 structure is realized by annealing at temperatures ?700 °C in argon. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation and reaction between constituent oxides in the spray deposition process is presented. Post-annealed CuCr0.93Mg0.07O2 thin films show high (?80%) visible transmittance and sharp absorption at band gap energy with direct and indirect optical band gaps 3.11 and 2.58 eV, respectively. Lower (∼450 °C) substrate temperature formed films are amorphous and yield lower direct (2.96 eV) and indirect (2.23 eV) band gaps after crystallization. Electrical conductivity of CuCr0.93 Mg0.07O2 thin films ranged 0.6-1 S cm−1 and hole concentration ∼2×1019 cm−3 determined from Seebeck analysis. Temperature dependence of conductivity exhibit activation energies ∼0.11 eV in 300-470 K and ∼0.23 eV in ?470 K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Heterojunction diodes of the structure Au/n-(ZnO)/p-(CuCr0.93Mg0.07O2)/SnO2 (TCO) were fabricated which show potential for transparent wide band gap junction device.  相似文献   

4.
This paper reports the spectral properties of Nd3+:Ca2Nb2O7. The spectral parameters of Nd3+ in Nd3+:Ca2Nb2O7 crystal have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained. The parameters of line strengths Ωλ are Ω2=4.967×10−20 cm2, Ω4=5.431×10−20 cm2, Ω6=5.693×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 122 μs, 103 μs and 84.4%, respectively. The fluorescence branch ratios calculated: β1=0.425, β2=0.479, β3=0.091, β4=0.004. The emission cross section at 1068 nm is 6.204×10−20 cm2.  相似文献   

5.
Lead-free (K0.5Na0.5)0.90Li0.06Sr0.02Nb(1−x)SbxO3 (KNLSN-Sbx) ceramics were synthesized by ordinary sintering technique. The compositional dependence of phase structure and electrical properties of the ceramics was systematically investigated. All samples possessed pure perovskite structure, showing room temperature symmetries of orthorhombic at x<0.01, coexistence of orthorhombic and tetragonal phases at x=0.01, and tetragonal at 0.02≤x≤0.05. The temperature of the polymorphic phase transition (PPT) was shifted to lower temperature and dielectric relaxor behavior was induced by increasing Sb content. The samples near the coexistence region (x=0.01) exhibited enhanced electrical properties: d33∼145 pC/N, kp∼38% and Pr∼20.4 μC/cm2.  相似文献   

6.
Strain in the La0.67Ca0.33MnO3 films has been tuned by varying substrate and film thickness, and its effects on magnetic anisotropy are studied based on the measurements of isothermal magnetization. Measuring the strain in the films by the out-of-plane lattice parameter (c), we found a strong dependence of the magnetic anisotropy constant (Ku) on strain. Ku decreases linearly from ∼−1.1×106 erg/cm3 for c=0.763 nm to 1.2×106 erg/cm3 for c=0.776 nm, corresponding to a change from tensile strain to compressive strain. Positive Ku signifies a uniaxial anisotropy with the easy axis perpendicular to the film plane, while negative Ku demonstrates an anisotropy of the easy plane character. Smaller or larger c leads a decrease or increase in Ku, which indicates the presence of other effects in addition to those associated with strain. Three distinctive processes for the magnetization are observed along the hard magnetic axis of the films on (001)SrTiO3, suggesting a possibility of strain relaxation even in ultra-thin films.  相似文献   

7.
NiAlxFe2−xO4 and Ni1−yMnyAl0.2Fe1.8O4 ferrites were prepared by the conventional ceramic method and were characterized by X-ray diffraction, scanning electron microscopy, and magnetic measurements. The single spinel phase was confirmed for all prepared samples. A proper explanation of data is possible if the Al3+ ions are assumed to replace Fe3+ ions in the A and B sites simultaneously for NiAlxFe2−xO4 ferrites, and if the Mn2+ ions are assumed to replace Ni2+ ions in the B sites for Ni1−yMnyAl0.2Fe1.8O4 ferrites. Microstructural factors play an important role in the magnetic behavior of Ni1−yMnyAl0.2Fe1.8O4 ferrites with large Mn2+ content.  相似文献   

8.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

9.
A novel mixed cadmium zirconium cesium oxalate with an open architecture has been synthesized from precipitation methods at room pressure. It crystallizes with an hexagonal symmetry, space group P3112 (no. 151), a=9.105(5) Å, c=23.656(5) Å, V=1698(1) Å3 and Z=3. The structure displays a [CdZr(C2O4)4]2− helicoidal framework built from CdO8 and ZrO8 square-based antiprisms connected through bichelating oxalates, which generates channels along different directions. Cesium cations, hydronium ions and water molecules are located inside the voids of the anionic framework. They exhibit a dynamic disorder which has been further investigated by 1H and 133Cs solid-state NMR. Moreover a phase transition depending both upon ambient temperature and water vapor pressure was evidenced for the title compound. The thermal decomposition has been studied in situ by temperature-dependent X-ray diffraction and thermogravimetry. The final product is a mixture of cadmium oxide, zirconium oxide and cesium carbonate.  相似文献   

10.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

11.
We report on the growth of cubic spinel ZnCo2O4 thin films by reactive magnetron sputtering and bipolarity of their conduction type by tuning of oxygen partial pressure ratio in the sputtering gas mixture. Crystal structure of zinc cobalt oxide films sputtered in an oxygen partial pressure ratio of 90% was found to change from wurtzite Zn1−xCoxO to spinel ZnCo2O4 with an increase of the sputtering power ratio between the Co and Zn metal targets, DCo/DZn, from 0.1 to 2.2. For a fixed DCo/DZn of 2.0 yielding single-phase spinel ZnCo2O4 films, the conduction type was found to be dependent on the oxygen partial pressure ratio: n-type and p-type for the oxygen partial pressure ratio below ∼70% and above ∼85%, respectively. The electron and hole concentrations for the ZnCo2O4 films at 300 K were as high as 1.37×1020 and 2.81×1020 cm−3, respectively, with a mobility of more than 0.2 cm2/V s and a conductivity of more than 1.8 S cm−1.  相似文献   

12.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

13.
In this paper we present a study of the magnetic anisotropy constant of nanocrystalline magnetic particles of CoxFe(3−x)O4, with x ranging from 0.05 to 1.6, synthesized by a combustion reaction. The magnetic anisotropy constants were obtained by fitting the high-field part of the major hysteresis loops with the law of approach equation down to temperatures of 4 K and up to fields of 60 kOe. The anisotropy constant depends strongly on both temperature and cobalt content x, exhibiting a nonmonotic dome-shaped dependence on x with a maximum at x=1.0. We found that fits at lower temperatures, i.e., 4 and 72 K, give values of K1 that are approximately one order of magnitude higher than those at higher temperatures, i.e., 272 and 340 K. For example, K1 for specimens with x=0.8 and 1.0 are 4.21×107 and 4.22×107 ergs/cm3 at 4 K, and 7.64×106 and 7.51×106 ergs/cm3 at 340 K, respectively. Thus, our determination of temperature-dependence of the anisotropy constant represents an improvement over existing works.  相似文献   

14.
Zn1−xNixFe2O4 ferrite nanoparticles were prepared by sol–gel auto-combustion and then annealed at 700 °C for 4 h. The results of differential thermal analysis indicate that the thermal decomposition temperature is about 210 °C and Ni–Zn ferrite nanoparticles could be synthesized in the self-propagating combustion process. The microstructure and magnetic properties were investigated by means of X-ray diffraction, scanning electron microscope, and Vibrating sample magnetometer. It is observed that all the spherical nanoparticles with an average grain size of about 35 nm are of pure spinel cubic structure. The crystal lattice constant declines gradually with increasing x from 0.8435 nm (x=0.20) to 0.8352 nm (x=1.00). Different from the composition of Zn0.5Ni0.5Fe2O4 for the bulk, the maximum Ms is found in the composition of Zn0.3Ni0.7Fe2O4 for nanoparticles. The Hc of samples is much larger than the bulk ferrites and increases with the enlarging x. The results of Zn0.3Ni0.7Fe2O4 annealed at different temperatures indicate that the maximum Ms (83.2 emu/g) appears in the sample annealed at 900 °C. The Hc of Zn0.3Ni0.7Fe2O4 firstly increases slightly as the grain size increases, and presents a maximum value of 115 Oe when the grains grow up to about 30 nm, and then declines rapidly with the grains further growing. The critical diameter (under the critical diameter, the grain is of single domain) of Zn0.3Ni0.7Fe2O4 nanoparticles is found to be about 30 nm.  相似文献   

15.
The crystal structure evolution of the Sr2GdRuO6 complex perovskite at high-temperature has been investigated over a wide temperature range between 298 K≤T≤1273 K. Powder X-ray diffraction measurements at room temperature and Rietveld analysis show that this compounds crystallizes in a monoclinic perovskite-type structure with P21/n (#14) space group and the 1:1 ordered arrangement of Ru5+ and Gd3+ cations over the six-coordinate M sites, with lattice parameters a=5.81032(8) Å, b=5.82341(4) Å, c=8.21939(7) Å, V=278.11(6) Å3 and angle β=90.311(2)o. The high-temperature analysis shows that this material suffers two-phase transitions. At 373 K it adopts a monoclinic perovskite structure with I2/m space group, and lattice parameters a=5.81383(2) Å, b=5.82526(4) Å, c=8.22486(1) Å, V=278.56(2) Å3 and angle β=90.28(2)o. Above of 773 K, it suffers a phase transition from monoclinic I2/m to tetragonal I4/m, with lattice parameters a=5.84779(1) Å, c=8.27261(1) Å, V=282.89(5) Å3 and angle β=90.02(9)o. The high-temperature phase transition from monoclinic I2/m to tetragonal I4/m is characterized by strongly anisotropic displacements of the anions.  相似文献   

16.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

17.
Ablation of Fe3O4 targets has been performed using a pulsed UV laser (KrF, λ = 248 nm, 30 ns pulse duration) onto Si(100) substrates, in reactive atmospheres of O2 and/or Ar, with different oxygen partial pressures. The as-deposited films were characterised by atomic force microscopy (AFM), X-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and extraction magnetometry, in order to optimise the deposition conditions in the low temperature range. The results show that a background mixture of oxygen and argon improves the Fe:O ratio in the films as long as the oxygen partial pressure is maintained in the 10−2 Pa range. Thin films of almost stoichiometric single phase polycrystalline magnetite, Fe2.99O4, have been obtained at 483 K and working pressure of 7.8 × 10−2 Pa, with a high-field magnetization of ∼490 emu/cm3 and Verwey transition temperature of 112 K, close to the values reported in the literature for bulk magnetite.  相似文献   

18.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

19.
The temperature dependences of DC electrical resistivity for perovskite-type oxides Y1−xCaxCoO3 (0?x?0.1), prepared by sol-gel process, were investigated in the temperature range from 20 K up to 305 K. The results indicated that with increase of doping content of Ca the resistivity of Y1−xCaxCoO3 decreased remarkably, which was found to be caused mainly by increase of carrier (hole) concentration. In the whole temperature range investigated the temperature dependence of resistivity ρ(T) for the un-doped (x=0) sample decreased exponentially with decreasing temperature (i.e. ln ρ∝1/T), with a conduction activation energy ; the resisitivity of lightly doped oxide (x=0.01) possessed a similar temperature behavior but has a reduced Ea (0.155 eV). Moreover, experiments showed that the relationship ln ρ∝1/T existed only in high-temperature regime for the heavily doped samples (T?82 and ∼89 K for x=0.05 and 0.1, respectively); at low temperatures Mott's ln ρT−1/4 law was observed, indicating that heavy doping produced strong random potential, which led to formation of considerable localized states. By fitting of the experimental data to Mott's T−1/4 law, we estimated the density of localized states N(EF) at the Fermi level, which was found to increase with increasing doping content.  相似文献   

20.
Epitaxial thin films of CaRu1−xMxO3 (M=Ti, Mn) were fabricated on a (0 0 1)-SrTiO3 substrate by spin-coat method using organometallic solutions (metal alkoxides). Results of X-ray diffraction and transmission electron microscopy indicate that the epitaxial films were grown pseudomorphically so as to align the [0 0 l] axis of the CaRu1−xMxO3 films perpendicular to the (0 0 1) plane of the SrTiO3 substrate. Ferromagnetism and metal-insulator transition are induced by the substitution of transition metal ions. The occurrence of ferromagnetism was explained qualitatively assuming a TiRu6 cluster model for CaRu1−xTixO3 film and a mixed valence model for CaRu1−xMnxO3 film. Ferromagnetism was also observed for layered CaRuO3/CaMnO3 film and CaRuO3/CaMnO3/CaRuO3/CaMnO3 multilayer film and the magnetism was explained by an interfacial exchange interaction model with magnetic Mn3+, Mn4+, and Ru5+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号