首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
成渝城市群臭氧污染特征及影响因素分析   总被引:14,自引:0,他引:14  
为研究成渝城市群O_3污染特征及其影响因素,对成渝城市群15个城市2015—2016年国控环境监测站点和国家气象台站数据进行了研究.结果表明,研究区域15个城市均存在不同程度的O_3超标现象.2015—2016年成渝城市群O_3污染形势愈发严峻,春末及夏季污染最为严重,且在7月达到O_3浓度峰值(118μg·m~(-3)),O_3污染空间分布呈片状,以资阳为中心的遂宁、眉山、成都等城市为O_3污染较为严重的区域.颗粒物、NO_2及CO均与O_3有显著相关性,其中,颗粒物与O_3浓度在冬季呈负相关,在夏季则表现为正相关.太阳辐射、气温、相对湿度及流场均是影响O_3浓度的重要因子,强辐射、高温及低湿易形成较高浓度的O_3,相对湿度对O_3浓度的影响呈先升后降的关系.  相似文献   

2.
近地层臭氧污染与气象条件密切相关,为了解珠三角地区春季臭氧(O3)污染的气象成因,选取了2020年4月9日和28日佛山地区春季两次典型O3污染过程进行对比分析.结果表明:(1)小风、低湿和高温是造成佛山春季O3污染发生的气象成因.(2)两次过程各站点O3峰值浓度大致出现在16:00—18:00,较年均统计偏晚1 h左右,最高气温明显低于夏、秋季;大多数站点日变化以单峰型为主,部分站点受局地风场和城市下风向传输影响呈现“倒U型”和“双峰型”.(3)垂直探测分析表明,4月9日O3污染过程主要由局地反应生成,垂直方向下沉气流主导,污染主要积聚在1000 m以下的近地面层;28日受局地生成和垂直交换作用影响,O3污染自下而上扩展,且早间残留层下传影响显著.(4)与长距离和高层输送相比,短途和低层传输对局地O3污染发生的作用更为明显(输送频率可达60%以上).春季佛山地区O3污染的主要传输源为珠三角东部和南部地区,污染防控...  相似文献   

3.
依据2014年银川市6个自动空气监测子站的监测数据,分析银川市臭氧浓度的污染特征,并对夏季臭氧相关气象因子进行分析。结果表明,从监测点位来看,银湖巷站点臭氧浓度最高,宁安大街次之,宁化生活区臭氧浓度最低。从时间变化规律来看,银川市臭氧浓度呈夏季最高,春季次之,秋季、冬季污染较低,其中臭氧月均浓度最大值出现在5月、6月。臭氧日变化呈单峰变化规律,夜间臭氧浓度较低,白天臭氧浓度较高。夏季臭氧浓度与二氧化氮、相对湿度呈显著的负相关性,与气温、风速呈显著正相关性。  相似文献   

4.
成都市臭氧污染特征及气象成因研究   总被引:5,自引:0,他引:5  
为研究成都市臭氧(O3)污染特征及其气象成因,对2014—2016年成都市6个国控环境监测站和同期气象台站逐小时地面观测数据进行了研究分析.结果表明:近4年来成都市O3污染日趋严重,O3年均浓度不断上升,较2013年升高51.2μg·m-3.O3浓度存在明显的季节变化特征:春、夏季较高,秋、冬季则较低,且各季节O3浓度变化具有很强的长期持续性特征.O3浓度日变化特征呈明显的单峰型分布,8:00出现最低值,15:00—16:00出现峰值,超标时段主要出现在13:00—17:00.O3浓度变化与紫外辐射、气温呈正相关关系,与相对湿度、风速呈负相关关系,且当紫外辐射大于12 MJ·m-2、气温高于15℃、相对湿度低于65%、西风或偏东北风控制时,成都市容易发生高浓度O3污染.  相似文献   

5.
臭氧是一种存在于地球臭氧层和近地面的气体,它对人类和环境是否有益取决于大气中存在的位置。高空臭氧层使人类免受紫外线伤害,而近地面臭氧是光化学烟雾产生的主要污染物,损害农作物、树木和其他植物生长,危害人体健康诱发儿童哮喘等疾病。本文结合2013年8月12日常州市出现的臭氧污染天气,利用气象和空气自动监测数据,对污染过程、变化特征和成因进行了分析。结果表明,在连续高温、太阳辐射强度大、风速低、大气扩散条件差等气象因素和臭氧前体物(NMHC)较高等不利条件下,易形成臭氧污染天气,导致空气质量下降。  相似文献   

6.
河南省臭氧污染特征与气象因子影响分析   总被引:1,自引:0,他引:1  
利用环境空气质量监测站和国家基准地面气候站数据,研究了2017年河南省臭氧(O3)污染时空特征及其与颗粒物、前体物和气象因子关系.结果表明,河南省2017年O3日最大8 h滑动平均值(MDA8)呈现夏季>春季>秋季>冬季的特征,年均值为108μg·m-3;各地市均有不同程度O3超标情况,其中,安阳超标天数高达88 d,信阳最少为17 d;春末夏初(5月和6月) O3污染最为严重,O3 MDA8月均浓度在140μg·m-3以上,并在6月达到峰值;定性和定量分析显示O3 MDA8月均浓度与颗粒物,O3小时浓度与CO、NO2呈负相关;不同季节、不同城市O3MDA8与气象因子(日照时长、气温、降雨、能见度、相对湿度及风速)的相关性具有差异.  相似文献   

7.
s利用2014~2016年兰州市4个监测点O_3、NO_2和CO浓度实时监测数据和日平均气温、相对湿度、气压和风速气象观测数据,统计分析了近3年O_3的时空分布特征以及环境因子(NO_2和CO)和气象因子对兰州市区O_3浓度的影响。结果表明:兰州市区O_3浓度年变化特征呈倒U型结构,夏季最高,峰值出现在5月,为(65.6±16.9)μg/m~3。4个监测点中生物制品所的年平均浓度最高。O_3的日变化为单峰分布,午后浓度较高,兰炼宾馆监测点峰值出现时间比其他区域超前约2 h。NO_2和CO与O_3的年变化相反,均表现出U型结构的年变化特征,都在12月达到峰值,分别为(2.53±0.80)mg/m~3,(78.9±28.2)μg/m~3。而NO_2和CO浓度白天浓度高于夜间。O_3浓度都随着NO_2和CO浓度的增加呈现指数形式下降。兰州市高温低湿气象条件有利于O_3的前体物(NO_2和CO)转化形成O_3。兰州市区发生高浓度O_3的气象和环境条件主要为日均气温高于20℃,相对湿度位于40%~50%以及风速≤5 m/s;NO_2浓度低于20μg/m~3,CO浓度低于0.5 mg/m~3。  相似文献   

8.
为探究黄河三角洲代表性城市东营市夏季环境空气臭氧(O3)污染成因,利用2021年6月东营市大气超级站监测数据与基于观测的化学盒子模型(OBM),较为全面地分析了O3污染特征与O3生成敏感性机制,并开展了前体物减排效果评估. 结果表明:①2021年6月东营市O3污染较严重,O3污染天〔日最大8 h平均O3浓度值(MDA8-O3)≥160 μg/m3〕占比达50.0%,MDA8-O3、挥发性有机物(VOCs)和氮氧化物(NOx)浓度平均值较非污染天分别升高70.0%、10.4%和7.6%. ②O3污染天呈高温、低湿的特点,O3浓度与温度的相关性在污染天显著增强. ③基于本地化的O3生成潜势计算表明,与非污染天相比,污染天异戊二烯、乙烯和甲苯对O3生成潜势的贡献分别增加了114.3%、68.6%和38.2%. ④污染天O3本地净生成速率明显升高. O3生成处于VOCs-NOx协同控制区,减少VOCs和NOx排放均可有效降低O3生成. 研究显示,现阶段东营市应实施VOCs/NOx协同减排比例大于或等于1∶1的减排策略,污染天(尤其是夜间)应加大NOx及VOCs减排力度,减轻污染天温度升高及植物源排放增加等不可控因素对O3污染的影响.   相似文献   

9.
钱悦  许彬  夏玲君  陈燕玲  邓力琛  王欢  张根 《环境科学》2021,42(5):2190-2201
利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区.  相似文献   

10.
2015年8月27日-9月2日重庆市经历了一次臭氧污染天气,通过分析发现,3个在线站污染时段臭氧平均浓度是清洁时段的1倍左右,浓度峰值有明显升高且日变化更加明显.通过分析3个在线站NO2、O3和总氧化剂Ox的浓度发现,南泉站与超级站的臭氧可能是局地化学过程生成与区域传输的共同作用,而缙云山站的臭氧则主要来自区域传输.利用观测值与基于观测的模型结果来分析,发现清晨时重庆市上空边界层以上残留的臭氧向下传输,导致07:00-09:00重庆近地面臭氧浓度的小幅度上升,同时由于近地面风速风向的变化,会导致各站臭氧的输入输出关系发生变化,且该次污染过程中3个在线站之间存在臭氧传输的现象.  相似文献   

11.
基于2016~2022年北京市环境监测和气象观测数据,结合后向轨迹聚类和潜在源区贡献分析北京市臭氧(O3)污染特征、气象影响和潜在源区.结果表明,2016~2022年北京市共发生41次具有跳变特征的O3污染过程,平均为5.9次·a-1,发生时间集中在5~7月,跳变当日(OJD2)较跳变前一日(OJD1)的ρ(O3-8h)平均值偏高78.3%,峰值浓度偏高78.9%,OJD2区域O3浓度高值带呈现由南向北推进的特征.北京市跳变O3污染发生主要原因可归纳为不利气象条件导致的本地积累叠加区域传输影响.跳变型O3污染发生时具有偏南风频率增加、温度上升、气压降低和降水减少的特征,偏南风频率增加为O3及其前体物的传输提供条件,在本地高温作用下快速发生光化学反应,叠加降水较少,综合推高OJD2的O3浓度水平.聚类分析得到6条气团输送路径,OJD2来自偏北方向的气团减少11.2%,来自偏南和偏东方向气团增加6.7%和4.4%,气团以短距离传输为主,偏南和偏东方向对应的O3浓度较高,对北京污染贡献较大.潜在源区分析揭示OJD2的O3污染的主要潜在源区是京津冀中南部和东部,贡献了82.6%污染轨迹.跳变型O3污染区域输送贡献明显,需要加强京津冀区域联防联控.  相似文献   

12.
深圳市夏季臭氧污染研究   总被引:4,自引:5,他引:4  
以2009年8月为例分析了深圳市夏季臭氧污染情况及污染气象特征,基于二维空气质量模式对臭氧污染控制进行数值模拟. 结果表明:深圳市8月各监测点均存在臭氧超标现象,污染形势严峻;副热带高压控制和热带气旋外围下沉气流是造成夏季出现高浓度臭氧的主要天气过程,此时大气边界层混合层高度在500~800 m,且近地面风速约在5 ms以内,不利于污染物扩散;臭氧的生成受前体物挥发性有机物(VOC)和氮氧化物(NOx)排放的共同影响,其中VOC排放的影响较大,深圳市臭氧控制应以降低VOC排放量为重点,模拟得出对VOC和NOx按25∶1~40∶1的比例协同减排可有效降低臭氧污染.   相似文献   

13.
为揭示成都市区臭氧污染气象条件特征,通过欧盟COST733天气客观分型软件对成都市区2016-2019年夏半年(5-9月)海平面气压场和500 hPa位势高度场进行大气环流形势分型,并结合同期臭氧监测数据、地面气象观测数据以及总云量实况分析产品,分析成都市区夏半年臭氧超标天气及气象要素特征.结果表明:成都市区2016-2019年夏半年共出现臭氧超标日数为159 d,超标率为26.0%,超标日主要集中于5-8月,小时超标多出现于14:00-17:00.臭氧污染日数最多的海平面气压场为弱低压型,其后依次为低压前部型、低压型、高压后部型.臭氧超标率最高的海平面气压场为低压前部型,其后依次为弱低压型、低压型、高压后部型.500 hPa位势高度场平直西风气流型臭氧超标日数最多,青藏高压型臭氧超标日数最少.青藏高压型是臭氧超标率最高的500 hPa位势高度场型,平直西风气流型臭氧超标率最低.成都市区臭氧超标日多出现在偏西北风下,近地面气象要素特征一般表现为风速1.2~1.6 m/s,气温在25℃以上,相对湿度多集中在70%左右,总云量和降水概率多低于60%,降水量级以小雨为主,太阳辐射和日照时数分别位于20.5~23.2 MJ/m2和6.0~7.8 h区间.小时臭氧超标近地面气象要素特征为气温和总辐射曝辐量相对较高,二者分别在30~36℃和0~3.5 MJ/m2之间,相对湿度在60%以下,总云量低于40%,以偏南风影响为主.研究显示,成都市区海平面气压场为低压型,500 hPa位势高度场为青藏高压型时,易发生臭氧污染.   相似文献   

14.
夏季城市大气O3浓度影响因素及其相关关系   总被引:19,自引:3,他引:19  
利用2003年夏季济南市区近地面大气O3、相关前体物和气象因素等观测数据,研究了O3浓度的分布特征及时间变化规律,分析了7月份O3与NO、NO2和CO等前体物及太阳辐射和气温气象条件的相关性.结果表明,济南市区夏季O3污染比较严重,观测期间各污染物O3、NO、NO2、NOx和CO浓度都相对较高,昼间O3与各前体物的浓度呈较好的负相关关系,与太阳辐射具有非常明显的相关性,而与气温的相关性不明显.根据以上分析结果,利用回归分析方法,建立了昼间O3浓度与前体物、气象因子之间的相关模式,结果表明O3浓度的计算值与观测值符合性较好.  相似文献   

15.
基于邯郸市2018年5~8月近地面O_3及其前体物(NO_x和VOCs)小时浓度数据,结合温度、相对湿度和风向风速等气象资料,分析邯郸市夏季O_3污染水平以及气象因子、前体物对其的影响;采用VOCs/NO_x比值法和基于Model-3/CMAQ模式系统的强力关闭法探究O_3生成敏感性,并运用等效丙烯浓度法识别出VOCs关键活性组分.结果表明:①观测期间,邯郸市O_3日最大8 h平均浓度(MDA8 O_3)在38.0~238.0μg·m~(-3)之间,污染天(MDA8 O_3160μg·m~(-3))占比高达44.7%,说明邯郸市夏季O_3污染较严重;②O_3与温度呈正相关、与相对湿度呈负相关,且在污染天相关性更显著;当温度高于28℃、相对湿度低于60%时,容易出现高浓度O_3现象,说明高温、低湿有利于O_3生成,也突出了本地光化学反应对O_3的重要贡献;污染天中,风向为西南、东南、东和东北风,且风速大于2.25m·s~(-1)时,邯郸市更容易出现高浓度O_3,在风速低于1.00m·s~(-1)时,也出现高浓度O_3现象,说明本地光化学生成和传输叠加是导致邯郸市高浓度O_3的重要原因;③O_3与NO_x、VOCs浓度在污染天反相关关系更显著,突出了本地光化学反应对O_3的重要贡献;基于Model-3/CMAQ的模式研究显示,邯郸市O_3生成受VOCs控制,削减VOCs对降低MDA8 O_3有一定的积极作用,同时存在单独减排NO_x的不利效应,因此控制VOCs,并重点控制烯烃(尤其异戊二烯和反式-2-丁烯)和芳香烃(尤其间/对-二甲苯和甲苯)是降低邯郸市MDA8 O_3的有效途径.  相似文献   

16.
北京市臭氧的时空分布特征   总被引:12,自引:2,他引:12  
对2012年12月~2013年11月期间北京市35个自动空气监测子站的O3浓度进行分析,探讨北京市O3浓度的时间、空间分布特征,并对夏季的一次O3高浓度过程进行了分析.结果表明,北京市O3浓度在5~8月维持相对较高浓度,其他月份则维持较低浓度.整体来看,4类功能的监测站点中O3平均浓度由高到低分别是对照点及区域点、郊区环境评价点、城区环境评价点和交通污染监控点;O3浓度日变化呈单峰型分布,一般在15:00、16:00达到峰值;O3还呈现明显的"周末效应",即周末白天时段O3浓度大于工作日浓度.北京市O3浓度城区相对较低,周边区县相对较高,生态植被优良的东北部地区浓度最高.2013年6月3日北京市发生一次O3高浓度过程,在下午西南风的作用下,榆垡、丰台花园、奥体中心和怀柔监测站O3峰值出现的时间从南到北依次滞后,且怀柔站在20:00才出现峰值,体现了这次过程中存在明显的O3输送特征.  相似文献   

17.
基于2000~2015年香港地区的臭氧监测数据和气象数据,分析了香港的臭氧污染特征及气象因素对臭氧污染的影响.结果表明:(1)香港地区臭氧浓度呈现明显的季节变化特征,其中秋季春季冬季夏季,臭氧超标日集中在夏季和秋季,超标日发生在冬季和春季的情形极少.(2)2000~2015年香港臭氧日最大8h平均浓度(MDA8)年均浓度呈增长趋势,平均增长速率为0.77μg·(m3·a)-1,臭氧MDA8第90百分位数浓度同样呈增长趋势,增长速率为1.49μg·(m3·a)-1.(3)较高的气温是香港地区臭氧污染发生的必要条件,气温越高越容易导致更高浓度的臭氧污染.(4)绝大多数情况下,臭氧浓度与相对湿度间呈负相关关系,相对湿度越高,香港地区的臭氧MDA8平均浓度及第90百分位数浓度均会降低.(5)当香港发生臭氧污染时,盛行风往往从偏北风或偏东风转为偏西风.随着风速的增大,臭氧平均浓度变化不大,但是臭氧第90百分位数浓度会明显降低.(6)降水和云量是影响臭氧浓度的重要因素,连续多日的无雨或少雨天气是臭氧污染事件发生的必要条件,而随着云量的增加,臭氧平均浓度和第90百分位数浓度会持续降低.(7)在太阳总辐射量≤20 MJ·m-2或日照时长≤10 h的情况下,臭氧浓度与太阳辐射及日照时长呈正相关关系.然而,在太阳辐射强烈的情况下(太阳总辐射量 20 MJ·m-2或日照时长 10 h),随着太阳辐射增强或日照时长的增加地面臭氧浓度反而降低,这是因为太阳辐射强烈的情况常出现在雨后天晴的背景下,并盛行来自海洋的偏南风,使得臭氧污染不易形成.(8)香港臭氧超标日的出现往往伴随着一系列气象条件的共同改变,包括晴天少雨、辐射增强、边界层高度增加、相对湿度降低、风速变小以及气温升高等气象特征,污染结束则伴随着相反的气象变化.  相似文献   

18.
目的 了解安徽省臭氧时空分布特征及其与气象要素的关系.方法 利用2017—2019年环境空气质量监测的臭氧数据和气象观测数据,并结合后向轨迹模型和潜在源区分析,分别评价安徽省臭氧污染区域分布和气象要素对臭氧浓度的影响,并分析区域传输对安徽省臭氧浓度的影响.结果 2017—2019年安徽省及各市臭氧浓度增长显著,2019...  相似文献   

19.
通过集中整治,我国空气质量已经有了明显改善,但在减排背景下近地面高ρ(O3)仍是当前最复杂的大气环境问题之一.利用2011—2017年(尤其是杭州市G20峰会期间)ρ(O3)、ρ(NOx)、ρ(VOCs)和气象条件观测数据,分析了杭州市G20峰会期间及不同时间尺度下杭州市ρ(O3)的变化特征及其影响因素.结果表明:①杭州市ρ(O3)日变化呈单峰型特征,15:00左右ρ(O3)达最大值(98.55 μg/m3);ρ(O3)周变化存在“周末效应”,周末ρ(O3)明显高于工作日;1 a中4—9月为ρ(O3)高值期,ρ(O3)峰值出现在5月和9月.以2013年为界,将2011—2017年ρ(O3)变化分成下降和上升2个阶段,2011—2013年呈下降趋势,降幅约为15.02 μg/m3,2014—2017年呈上升趋势,增幅约为23.25 μg/m3.②减排措施的实施对ρ(O3)存在双重作用,其可通过降低前体物质量浓度抑制O3的生成,又能引起大气污染物质量浓度下降、太阳辐射增强,从而促进O3的生成.当O3前体物质量浓度较低时,在强太阳辐射等气象条件驱动下,近地面仍会呈现高ρ(O3)的现象.③气象条件是驱动ρ(O3)日、月变化的控制因素;相反,前体物质量浓度则是ρ(O3)周、年变化的控制因素,此时VOCs或NOx控制区、“周末效应”等ρ(O3)变化特征开始显现.研究显示,不同时间尺度下杭州市O3污染的控制因素不同.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号