首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently used models relating basic properties of the feed material, roller press design and its operating parameters are reviewed. In particular, we discuss the rolling theory for granular solids proposed by J.R. Johanson in the 1960s, later trials utilizing slab method and newly developed final element models. These methods are compared in terms of efficiency and accuracy of predicting the course of basic process variables like nip angle, pressure distribution in roll nip region, neutral angle, roll torque and roll force.

The finite element method offers the most versatile approach because it incorporates adequate information about powder behavior, geometry and frictional conditions. This enables to perform realistic computer experiments minimizing costs, time and resources needed for process and equipment optimization.  相似文献   


3.
Sintering of PVC     
Although PVC is counted as one of the amorphous plastics it possesses a distinct powder grain structure. This structure is responsible for various effects; for example it is impossible to sinter thick pieces of rigid PVC dryblend possessing satisfactory mechanical properties. For this application, it is necessary to break down this powder structure into smaller parts, called primary particles, by mechanical shearing and covering these particles with processing auxiliaries enabling it to be sintered. PVC can then be melted by the influence of temperature and pressure in the same way as other thermoplastic materials. For this reason, tests were carried out to determine the best material configuration and the necessary data for the compounding and shearing process, and the sinter conditions. A continuously working roll mill was used to break down the structure. The rolls of this equipment are provided with grooves inclined at a certain angle. With this construction it is possible to achieve a high shearing rate at a low mass-temperature. Furthermore, all additives can be added during the rolling process, so that no additional mixing process is necessary. These gelable pellets, made by the roll mill, can thus be formed in a die into plates of different thicknesses. Samples were pressed by varying compounding and sintering conditions and these were tested for mechanical properties.  相似文献   

4.
This work used two-dimensional small-angle X-ray scattering (2D-SAXS) to investigate the compaction behaviour of pre-gelatinised starch (PGS) and microcrystalline cellulose (MCC), which are commonly used as pharmaceutical excipients. By analysing azimuthal variations in scattering intensity, reproducible relationships were found between the compaction pressure, relative density and changes in the shapes of 2D-SAXS patterns for each material. These results indicated differences in the compaction mechanisms between PGS and MCC.The relationships also provided a means for investigating local variations in compaction behaviour within specimens prepared using different materials and compaction conditions. Relative density results from 2D-SAXS were consistent with expectations based on the effects of friction during compaction and appeared similar to data from other methods. In addition, however, 2D-SAXS measurements revealed local variations in the effective direction in which compaction occurred, with significant radial components observed near the die walls. This appeared to be consistent with the transfer of some compaction pressure to friction on the die wall. These observations represent an important advance, since other experimental methods do not easily reveal the direction of force transmission within the powder compact.  相似文献   

5.
Roll compaction is a dry, continuous granulation process, which is widely used in the pharmaceutical, chemical, metallurgical, mineral and agricultural industries to produce dust-free and free-flowing agglomerates. Intelligent software has been used to predict the relationships between tablet formulations, roll compaction process parameters and the roll compacted ribbon, from which granules for tablet manufacture can be produced. The software exploits the strengths of artificial neural networks, genetic algorithms and fuzzy logic to predict multivariate relationships from experimental data. Input data were generated from material characterisation studies and from investigations conducted on a 20 cm diameter laboratory-scale roll press with side plates, where process parameters such as roll speed (1-5 rpm), roll gap (0.5-1.4 mm) and compaction pressure (up to 230 MPa) could be manipulated. The relative significance of inputs on various outputs such as ribbon properties, nip angle and maximum roll compaction pressure was investigated using the commercially available artificial intelligence software FormRules (Intelligensys, Teeside, UK). The important inputs and required outputs were subsequently used in the model-development software INForm (Intelligensys, Teeside, UK) so that the conditions necessary to produce ribbons with specific desired properties could be predicted.  相似文献   

6.
The compression and compaction behaviour of bentonite, limestone and microcrystalline cellulose (MCC) — three cohesive powders widely used in industry were studied. Uniaxial compression was performed in a cylindrical die, 40 mm in diameter and 70 mm high, for three selected cohesive powder samples. The initial density, instantaneous density and tablet density were determined. The influence of maximum pressure and deformation rate was examined. The secant modulus of elasticity Esec was calculated as a function of deformation rate v, maximum pressure p and powder sample. After compaction experiments in hydraulic press at three pressures - p = 30, 45 and 60 MPa - and two different deformation rates, the strength of the produced tablets was examined in a material strength testing machine.From uniaxial compression tests performed on the universal testing machine for loading and unloading, the modulus of elasticity E was calculated on the basis of the first linear phase of unloading. The total elastic recovery of tablets was also obtained.  相似文献   

7.
Nowadays dry granulation of powders has become a very important research topic because it is the most economic way of granulation, making the particle handling easier, and avoiding the loss of material during particle processing, or particle transfers. This kind of process has been deeply studied but a better knowledge appears necessary to control the great number of parameters of the process. This is particularly important in cases where the nature of the powder may lead to very complex phenomena during compaction.In order to try and optimise dry granulation process for organic compounds, a roll press has been designed with a series of instruments enabling to control the compaction process. The apparatus consists of three parts: a vertical container with rotating steel blades avoiding arches into which the powder is poured, a feeder transferring the powder towards the rolls; the feeder is equipped with an horizontal helical screw in a cylindrical draft tube (10 mm in internal diameter, 500 mm long) and in the end of the feeder, a junction allows the change from the cylindrical symmetry of the feeder to the prismatic symmetry existing in the roll gap. The roll press (0-500 kN, load per unit length 0-) has been developed to record different major classical parameters: the roll speed, the roll gap, the press strength, the rotation angle, and the feeding rate (between 0 and ). In comparison with different kinds of roll press described in the literature, in this work an original instrumentation system has been developed to catch specific data. The 3D-pressure distribution profiles at the interface between powder and the roll wall and the drive torque applied to the rolls were measured. A large-sized smooth steel-made roll (240 mm diameter, 50 mm width) has been chosen to compare the results to the industrial scale.The results obtained with an organic compound exhibited the dependence—sometimes unexpected—of the rotation angle, the feeding and the rotation speed on the pressure distribution, the roll width, and the drive torque.  相似文献   

8.
The effects of agglomerate properties, such as the binder type, binder content, moisture level, and agglomerate size, on a model compaction process was investigated by using green density-pressure interrelationships for a range of agglomerated alumina powders. The model compaction process involved single ended nominal uniaxial stress transmission in a cylindrical die. The influences of the sample aspect ratio, die wall lubrication, and compaction rate were also investigated. Two types of water soluble polymeric agents, a poly(vinyl alcohol) (PVA) and a poly(ethylene glycol) (PEG), were used. It was shown that certain agglomerate properties have a strong influence upon the compaction behaviour of these ceramic powders. The extent of the compaction is enhanced by using agglomerates with a low agglomerate yield point. In the PVA system, the agglomerate yield points decreased with increasing moisture content. The compaction behaviour of the agglomerates showed a rate dependency, that is, the compaction is retarded with increased pressing rate. The green densities of the compacts prepared in the unlubricated die were lower than those of the compacts prepared in the lubricated die due to the higher wall frictional forces operating in the unlubricated die.  相似文献   

9.
C. Zhao  M. Bruhis 《Powder Technology》2011,208(1):225-230
A major advantage of the powder metallurgical (P/M) manufacturing process is its ability to shape powder directly into a final component with a primary goal of a high quality, homogeneity of density and mechanical properties and productivity. In this research, powder die filling, powder transfer and powder compaction process have been studied in succession using a novel experimental set-up that utilizes a high strength transparent wall section to observe and record the particle movement and powder compaction during the entire sequence leading up to the formation of a green part. The natural powder pattern itself, as observed from the transparent wall section, is utilized for obtaining full-field displacement and strain measurement. The test set-up and the strain measurement technique offer a means of quickly obtaining density distribution data in select cases. In addition to the above, several powder flow characteristics during die filling, powder transfer and powder compaction under a range of test conditions have been noted through a series of high-speed photographic recordings.The observations reveal increased porosity in the die wall region due to friction and formation of shear bridges during powder transfer stages during suction filling. Spatial density data from optical strain measurements in the top, middle and bottom regions of the die are consistent with similar bulk density measurements from mass and volume of the 3 regions.  相似文献   

10.
The compaction behavior of NaCl as a model substance is investigated by an integrated experimental and computational approach. The method for characterization of this granular material employs convenient experiments: load-displacement measurements of compaction; measurements of strain on outer circumference of an elastic tubular die; load on bottom and top of the powder compact, as well as compressive strength tests. Related equations for identification of material parameters are derived and are used to characterize powder behavior and powder-die friction. Subsequently, these material parameters are used in simulations with the Drucker-Prager-Cap (DPC) model. For the verification of the computations density distributions are determined based on micro X-ray computer tomography. Good agreement between the spatial density distributions from measurements and simulations is obtained. Restrictions of computer tomography in powder compaction applications are specified. While the study employs NaCl as a model substance, the approach is applicable to a wider array of granular substances.  相似文献   

11.
Localized densification and compaction efficiency at high pressures was studied using X-ray computed tomography. Stage III begins with the initiation of a region of uniform average density within the overall high-density zone. No further densification occurs in this region; additional pressure is transmitted into adjacent, less-dense zones and the die wall. This localized increase in wall friction continuously decreases compaction efficiency. Discrete element modeling was used to visualize force transfer. The transition was governed by events that ranged from the microscale to the macroscale. Terapascal levels of pressure were required to produce a uniform compact.  相似文献   

12.
External lubrication is often used to complete compaction process of powder materials. The main goal of this method is generally to reduce the amount of admixed internal lubricant (Zinc stearate powder) within the raw material. The application of external lubricants enhances the density uniformity and the mechanical strength of the resulting compacts. This study investigates the effects of the external lubricant amount for UO2 powder compaction and the properties of the corresponding green pellets (corresponding to the compacts before sintering) without any admixed lubricant in the raw powder in order to evaluate the feasibility of this route in the case of nuclear powder. Results show that there is a quantity or number of layers from which the external lubricant applied on the die wall becomes detrimental to the friction index and the ejection force measured during the pressing cycle. The quality (surface defects, mechanical strength) of the green pellets can also be affected by the amount of lubricant. Thus the quantity and the thickness of the die wall lubricant must be optimized in order to assure an efficient mixed lubrication mode corresponding to the better lubrication mode in our study case.  相似文献   

13.
This paper describes an experimental procedure to validate numerical models used to simulate powder pressing. It consists mainly of two steps: closed die uniaxial pressing followed by isostatic pressing. The uniaxial pressing causes a non-homogeneous density distribution in the pressing direction as a consequence of friction between die walls and powder. In the isostatic pressing, less compacted regions have a larger volumetric strain, resulting in a non-trivial shape of the re-compacted part, which computes indirectly the previous density distribution. Experimental data from both steps are compared to the results from finite element models. The Drucker-Prager/Cap constitutive model was used to represent the compaction of alumina powder. Several simulations covering a range of parameters obtained from the literature were performed to calibrate the model, through an inverse analysis. The developed procedure sheds a light in the methods to calibrate and/or validate constitutive models used for powder pressing.  相似文献   

14.
On the basis of the results of tribological investigations during the compaction of iron powder type NC.100.24 and of the distribution of porosity in sintered compacts, the character of powder material displacements was described for the last stage of compaction, i.e. after establishment of a preset compacting pressure. In those investigations, the model used was of the compaction of a powder material in a rotary die. The choice of such a model results from the necessity of programming an experiment with a more complex state of stresses within the mixed powder being compacted than that in standard static compaction.In the paper decisive conditions are determined for depth of penetration of shearing stresses in the compacted material, as well as conditions of change of the state of friction of the compact against the stationary mandrel surface from static to kinetic friction.  相似文献   

15.
Theory and experimental calibration of density dependent modified Drucker-Prager/Cap (DPC) model are presented by using a novel instrumented cubic die in powder compaction tests. The cubic die is designed for directly determining the loading and unloading forces and displacements of powder compact inside the die in compaction and transverse directions without any additional calibration. The cap surface parameters and elastic properties are characterized by fitting stress and strain curves recorded during loading and unloading at different green density values and the plastic material parameters for failure surface are obtained by additional radial and axial compressive tests. The experimental data is subsequently used in the simulation of cubic die compaction to verify the results from the density dependent modified DPC model.  相似文献   

16.
王金秀 《中国化工贸易》2013,(4):191-191,364
工作辊热凸度与轧制时间、轧制速度、轧制节奏、轧辊冷却水等有着密切的关系,充分了解轧辊热凸度在轧制过程中的变化,不仅可以提高宽带钢热连轧机组热辊形的模型控制及预报精度,而且可以通过及时调整轧制节奏,轧辊冷却水系统的工作情况调整轧辊热凸度,对于板形控制具有重要意义。  相似文献   

17.
Die compaction of powders is related to the principles of powder mechanics. Measurements are reported of boundary normal stresses occuring during one-sided die compaction of a fine ferric oxide powder. One series of experiments is carried out with carefully cleaned die walls, another series is performed with lubricated dies. The powder yield locus and wall yield loci are determined respectively with the help of a triaxial cell and a powder/wall friction apparatus. For both series of experiments the powder yield locus lies above the wall yield locus. The experimental data give support to the assumption that the stresses at the die wall obey the wall yield locus. With respect to the internal stresses of the powder, evidence is obtained that the powder yield criterion is not fulfilled, at least not necessarily.  相似文献   

18.
The thin layer model is based on the assumption that the deformation of powder during tableting can be transferred to the roller compaction process, provided that it was established with sufficient accuracy in the tableting experiments. In particular, the process of compaction between the rolls is presumed to consist of three parts, a rearrangement, an “exponential” and an elastic recovery phase. The rearrangement and “exponential” phases are used to calculate the densification of the material. The forces between the rolls during elastic recovery, the third phase, proved to be essential to the prediction, because 20% to 30% of the total roller compaction force is required to counteract ribbon recovery. Four different excipients and one powder blend were tested in the model. For two materials, the density and force predictions turned out to be accurate within ± 2.5% and ± 10%, respectively. For one excipient and the model blend, the predictions deviated systematically whereas those for the remaining excipient were within the above mentioned limits in ca. 50% of the experiments. For explaining these differences, we evaluated both the influence of the course of the force-time profile, at comparable densification times, and the influence of different compression times, for comparable force-time profiles. Finally, the impact of density distributions within ribbons on the prediction was estimated.  相似文献   

19.
Dry granulation via a roller compactor was simulated based on the artificial neural network (ANN) methodology. Two process parameters, including roll force and screw speed, were considered as input of the simulation whereas ribbon density was considered as output. Experimental work was carried out using an industrial‐scale roller compactor. The results showed an excellent agreement between simulation and experiments. The findings were compared as well with the results obtained in a previous study employing the Johanson model, which is the predominant model for the simulation of a roller compaction process. The overall deviation observed for the developed ANN model was found to be significantly improved in comparison with the deviation obtained for the Johanson model. The results demonstrated a very good capability and robustness of the developed ANN model in design and optimization of the roller compaction process.  相似文献   

20.
The effect of processing parameters on pharmaceutical tablet properties   总被引:1,自引:0,他引:1  
The preferred drug delivery system today is represented by tablets, which are manufactured using high speed rotary presses where the powder material is compressed in a die between rigid punches. Compression represents one of the most important unit operations because the shape, strength and other important properties of the tablets are determined at this time. These properties are dictated not only by the characteristics of the powder constituents (which are determined by the properties of the constituents, mixing and granulation), but also by the selection of process parameters imposed by production machinery. This paper focuses on the die fill and the compaction parameters.Die fill on high speed rotary tablet production presses is a complex phenomenon. On most presses the powder is deposited into the die under the effect of the gravity. Die fill is facilitated by the paddle wheels operating in the feed frame and the suction effect, whereby the lower punch is withdrawn while the die opening is exposed to powder in the feed frame. An experimental shoe-die system was developed to examine the effect of the contributing factors. High speed video observations enabled a detailed examination of the die fill process. The flowability of powders was quantified using the concept of critical velocity. It was illustrated that a detailed understanding of die fill could contribute to the design of feed frames as well as optimisation of press parameters in order to ensure consistent and efficient die fill, thus maximising the productivity of the presses.The compaction parameters are discussed with reference to tablet strength. Results generated using a compaction simulator as well as a number of rotary tablet presses are presented for a range of pharmaceutical excipients and placebo formulations.As a result of combined interactions between the material behaviour during compaction, powder-die wall friction and process parameters during die fill and compaction, the resulting tablets are in general non-homogeneous. X-ray computed tomography is employed to characterise the internal density distribution in tablets. The effect of tablet structure on friability, erosion and disintegration behaviour is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号