首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X70管线钢冲击韧性实验研究   总被引:17,自引:0,他引:17  
通过不同实验温度下的不同厚度、不同缺口取向含V型缺口试样夏比冲击实验和宏观断口分析,研究X70高韧性管线钢的冲击韧性的厚度、缺口取向和温度与分层裂纹耦合效应。结果表明:X70管线钢具有严重的各向异性现象,其在平行钢板表面方向和沿钢板厚度方向力学性能差异较大。分层裂纹主要是试样中材料固有的片状缺陷所致,有确定的方向性,同时与温度又有密切的关系,但分层裂纹的产生对X70管线钢的冲击韧性都是有益的。当裂纹扩展方向与厚度方向的相对方位改变时,分层裂纹效应亦将改变,实际的冲击韧性也改变。因此,应用单一试样厚度、单一缺口方向和单一的实验温度的表观冲击韧性数据进行管道结构的安全评定可靠性较差,必须考虑管道的温度、管壁厚度和缺陷方向的耦合效应。  相似文献   

2.
针对不同强度级别的管线钢X70-X52对接的焊接工艺进行了研究。通过碳当量计算和金相组织观察.分析了钢材焊接性,确定出预热和道间温度,选择了焊接材料,并进行了坡口设计。同时根据Q/SY XQ18—2002和XQ—CS—JX—SPE—0010标准对所制定的焊接工艺进行了评定。该项研究结果表明:管口外观检查和X射线探伤合格,金相组织、拉伸试验、冲击试验等各项性能指标优良。按照该工艺施工的焊接接头质量合格。完全满足施工的技术要求。  相似文献   

3.
杜健辉  廖聪  李伟  施良政 《焊接》2023,(9):54-58+64
直缝埋弧焊管作为重要的工程材料,广泛应用于钢结构、流体管道以及基础打桩等工程中。阿尔及利亚客户基于经济效益考虑,要求直缝埋弧焊原材料在不额外添加金属元素Ni的情况下,不仅需要满足API 5L 45th PSL2规范,还要求在-29℃条件下具有较高的冲击韧性。为了获得良好的具有良好低温冲击韧性的X65M级别钢材的焊接接头,采用四套不同化学成分的内外焊设计方案,进行X65M管线钢焊接工艺试验。利用光学显微镜分析了焊缝和热影响区的宏观组织,通过硬度试验和多温度冲击试验测试了其硬度和韧性。试验结果表明,MnNiTiB,MnMoNiTiB+MnMoTiB和MnMoNiTiB内外焊方案均满足:在-29℃条件,要求焊缝中心、热影响区冲击吸收能量单个值≥49 J,平均值≥61 J,其中MnMoNiTiB方案富余量最大。从经济性上看,MnNiTiB方案满足技术要求,同时价格在4个方案中是最低的。  相似文献   

4.
通过夏比V型缺口冲击试验研究X70大变形管线钢20℃至-100℃的低温韧性,采用扫描电镜观察断口形貌并分析其断裂特征,讨论冲击温度、断口分离、分层裂缝等对管材低温韧性的影响,以及断口分离的影响因素。结果表明:随着冲击温度降低,纵向管材的冲击吸收能量没有明显减小,横向管材的冲击吸收能量以9%降速逐渐减小,-100℃时管材并没有发生脆性转变;随着温度降低而形成管材断口分离并趋于严重;断口起裂区和纤维区的微观形貌较为相似,以韧窝断裂为主,而放射区的微观形貌差异较大,温度低于-40℃时,放射区呈韧窝、滑移分离、解理断裂交互出现的混合型断裂特征;断口分离的主要影响因素是冲击温度和试样缺口方向,-40℃为管材冲击吸收能量转变和断口分离现象产生的临界温度点。  相似文献   

5.
通过浸泡实验、失重实验、电化学实验对深海用厚规格X70管线钢焊接接头各区域耐蚀性进行研究,利用XRD分析其钝化膜的组成,利用SEM观察其显微组织。结果表明,焊缝的耐蚀性最优,热影响区耐蚀性次之,近热基体耐蚀性最差,且对于相同区域,内焊的耐蚀性优于外焊。内层腐蚀产物Fe_3O_4形成致密的钝化膜能有效减缓反应的进行,外层疏松的腐蚀产物Fe_2O_3、FeOOH、Fe(OH)3对基体无保护作用。焊缝处微观组织多为晶内形核铁素体,且马氏体-奥氏体(M-A)组元细小且均匀分布,耐蚀性最好;热影响区组织梯度变化最大,M-A组元粗大,耐蚀性次于焊缝;近热基体由铁素体和贝氏体组成,贝氏体呈岛状分布,耐蚀性最差。内焊部分受外焊热循环的影响,微观组织更加细化,M-A组元体积分数较多,耐蚀性好于外焊。  相似文献   

6.
X70管线钢焊接接头慢拉伸应力腐蚀行为   总被引:2,自引:0,他引:2  
利用金相显微镜观察了X70管线钢焊接接头组织结构,通过慢拉伸试验分析了X70管线钢焊接接头在NACE溶液中应力腐蚀行为,测试了X70管线钢焊接接头在不同H2S浓度下电化学腐蚀电位,讨论了X70管线钢焊接接头自腐蚀电位形成机理。结果表明,X70管线钢焊接接头熔合区中M-A组元所产生的微裂纹是焊接接头应力腐蚀产生裂纹的主要来源,使得其耐腐蚀性能下降;焊接接头在腐蚀初期主要表现为典型的点腐蚀特征,点蚀坑相互连接不断扩展,点蚀坑被生成的腐蚀产物所覆盖;焊接接头自腐蚀电位随着H2S浓度的增加而发生负移,应力腐蚀敏感性增加,在含饱和H2S NACE溶液中具有明显的应力腐蚀倾向。  相似文献   

7.
西气东输工程用X70高强度管线钢中厚板焊后,焊缝要经过长时间、反复地加热和冷却成形过程,通过焊接材料筛选和工艺参数优化,制定了合理的焊接工艺。按制定的工艺进行焊接,试件的力学性能可满足西气东输工程技术条件要求。  相似文献   

8.
X70管线钢焊接性分析   总被引:2,自引:0,他引:2  
刘雪梅  高连才  张彦华 《电焊机》2004,34(7):14-15,23
针对管道建设中日益广泛采用的X70管线钢,分析了其碳当量与冷、热裂纹敏感性问题,探讨了防止X70管线钢产生冷裂纹的工艺措施,计算了不同板厚X70管线钢的预热温度,为实际的管道建设提供了理论依据与工程指导。  相似文献   

9.
对X70管线钢焊接接头分别进行了15、30和60 min的喷丸处理,利用光学显微镜、X射线衍射仪、粗糙度仪等测试仪器分别对其横截面的光学显微组织,表面残余应力以及表面粗糙度进行了观察及测试,并研究了上述因素对其耐电化学腐蚀性能的影响。结果表明,喷丸后管线钢表面粗糙度随喷丸时间延长先增大后降低,可在表层形成50μm左右的形变层,并能将焊接残余拉应力转变为压应力,管线钢焊接接头的耐腐蚀性能在喷丸15 min时最差,喷丸60 min时最优。  相似文献   

10.
利用扫描电镜对X70管线钢焊接接头微观结构进行了观察,采用中性5%连续盐雾试验考察了其焊接接头表面的腐蚀性能,分析了X70管线钢焊接接头在盐雾介质中腐蚀行为,对点蚀坑内腐蚀产物进行EDS分析,探讨了X70管线钢焊接接头表面点蚀机理。结果表明,X70管线钢焊接接头在盐雾环境中耐蚀性低,容易诱发局部点蚀,Cl-对X70管线钢焊接接头的腐蚀起主导作用;其腐蚀过程主要由表面点蚀、形成腐蚀产物层、裸露的焊接接头表面腐蚀等3个部分组成,其中点蚀是裂纹萌生和扩展的主要来源;腐蚀产物主要是由Fe的氧化物和少量Fe的氯化物构成,其形成的氧化膜提高了其防盐雾腐蚀能力。  相似文献   

11.
目的 开展电解渗氢管线钢及其焊接接头显微组织和力学性能研究,为掺氢天然气管线服役安全可靠性评估提供支持。方法 X60、X70管线钢及其焊接接头试样在100 mA/cm2下进行24 h电解渗氢后,开展有、无渗氢情况下相关试样的显微组织结构、氢热脱附、拉伸力学性能与断口形貌测试分析,揭示渗氢对X60、X70 2种管线钢及其焊接接头氢脆敏感性的影响规律。结果 X60及X70管线钢以细小多边形铁素体为主,其焊缝和热影响区以粗大的粒状或板条贝氏体为主。相对于X70管线钢,其焊接接头具有更高的氢渗透性和稳定性。渗氢导致X60、X70管线钢及其焊接接头试样的强度与塑性降低,渗氢X70焊接接头力学性能衰减最为明显,拉伸断口呈准解理断裂特征。结论 X70管线钢的氢脆敏感性高于X60管线钢,管线钢焊接接头的氢脆敏感性高于母材。  相似文献   

12.
利用中性盐雾试验对X70高钢级管线钢焊接接头进行室温腐蚀,通过扫描电镜和能谱仪观察了X70管线钢焊接接头盐雾腐蚀前后表面微观形貌和化学元素的变化,并采用EDS对盐雾腐蚀后焊接接头表面进行了面扫描分析. 利用XRD讨论了其盐雾腐蚀前后表面物相,分析了X70管线钢焊接接头盐雾腐蚀后表面腐蚀膜的组成、作用和腐蚀机理. 结果表明,盐雾腐蚀后失效主要形式是点蚀和剥落腐蚀,活性Cl-离子破坏了试样表面的钝化膜,与Fe原子接触,是发生点蚀的主要原因;焊接过程中产生的残余拉应力成为腐蚀的应力源,使材料在腐蚀介质中发生应力腐蚀开裂,在与晶间腐蚀共同作用下发生剥落腐蚀;腐蚀膜达到一定厚度后覆盖在试样表面,阻隔试样与腐蚀介质的接触,有利于抑制腐蚀的持续进行.  相似文献   

13.
针对石油天然气输送常用的X65管线钢管进行闪光焊接工艺试验,测试了闪光焊接接头各区域的低温冲击韧性。采用光学金相显微镜、电子显微分析技术研究闪光焊接热循环对X65管线钢接头组织和韧性的影响。结果表明,X65管线钢管闪光焊接接头焊缝成形良好。焊态下,接头各区域的-40℃低温冲击功较低,焊缝区冲击功仅为11.6J,只有母材的27%。经过焊后热处理,接头的冲击韧性有所改善,焊缝冲击功可以达到母材的55%。接头焊缝组织为粗大块状铁素体、针状铁素体和层片状珠光体,热处理后晶粒细化。  相似文献   

14.
X80管线钢冲击韧性研究   总被引:1,自引:2,他引:1  
采用"系列温度冲击试验法"测定了一种X80管线钢在-100~20℃的冲击功,分析了该管线钢冲击断口的分层现象以及冲击韧性的影响因素.综合冲击吸收功、脆性断面率及断口形貌,确定了其韧脆转变温度为~83℃.对于高钢级管线钢,可通过采用先进的冶炼工艺和控轧控冷工艺严格控制化学成分、获得细小的晶粒和均匀的针状铁索体组织,来提高钢的冲击韧性、降低韧脆转变温度.  相似文献   

15.
X90管线钢的低温冲击韧性和断口形貌分析   总被引:2,自引:0,他引:2  
采用系列温度冲击试验法测定了X90管线钢在-100~0℃的冲击吸收能量和剪切断面率,用扫描电镜观察了不同温度下试验钢的冲击断口形貌。结果表明,该管线钢具有良好的低温冲击韧性,-80℃时的冲击吸收能量可达219 J,韧脆转变温度ETT50为-78.5℃、FATT50为-83.5℃;冲击断口形貌在0、-20℃下以大而深的等轴状韧窝为主,在-40、-60、-80℃下以抛物线韧窝为主,且韧窝尺寸和深度开始减小,在-100℃以扇形解理花样为主。试验钢在-80~-40℃温度区间,冲击断口发生显著分离现象,导致冲击吸收能量与剪切断面率曲线斜率减小。  相似文献   

16.
利用激光冲击波对X70管线钢焊接接头进行了表面改性处理,通过SSRT分析了激光冲击处理对试样在NACE饱和H2S溶液中应力腐蚀的影响。采用扫描电镜观察了激光冲击处理前后试样表面腐蚀产物形貌、断口形貌和应力腐蚀裂纹形貌等,并用能谱分析仪分析了腐蚀产物化学成分组成,探讨了激光冲击处理对试样SCC的影响机理。结果表明:激光冲击处理后焊接接头抗拉强度、伸长率和断面收缩率分别提高了5.1%、4.5%和28.7%,内积功的SCC敏感性指数Iscc从50.94%下降至45.10%,降低了11.64%,断口形式由脆性断裂转变为韧性断裂。激光冲击处理改善了焊接接头表面应力状态和材料组织结构,减缓了裂纹的萌生和扩展,增强了其抗SCC的性能,但不能消除明显的应力腐蚀倾向;激光冲击处理降低了氢致开裂的倾向,有利于提高焊接接头抗H2S应力腐蚀的性能。  相似文献   

17.
在机器人全自动焊接工艺开发过程中,存在其焊接接头低温冲击功不满足焊接标准要求或者离散度较大的现象。为解决此问题,针对多个可能影响机器人自动焊焊接接头低温冲击韧性的因素,制定不同的焊接方案,进行焊接试验及焊后焊接接头低温冲击功测试,并对得到的数据进行离散度分析。经对比发现,不同影响因素对于焊接接头低温冲击韧性影响大小不一,热输入及焊材牌号的影响最大。施工效率最高的焊接方案为:采用M60焊材,以1.0~1.25 kJ/mm的热输入焊接,采用气刨清根并配以打磨,背面填充采用药芯气保焊,配以L71焊材焊接,按照此方案开展实验,结果表明焊接接头的低温冲击功在-40℃时仍满足规范要求。  相似文献   

18.
X60管线钢在-20℃低温焊接的接头组织性能   总被引:1,自引:0,他引:1       下载免费PDF全文
结合X60管线钢在-20℃低温条件下的焊接施工实际情况进行了试验、测定及分析,研究了711 mm×15.9 mm管道环焊接头的力学性能、接头的金相组织、硬度、冲击吸收功以及冲击断口形貌等.结果表明,在-20℃低温条件下,焊接完成的X60管线钢环焊接头力学性能测试;其HAZ的最大硬度值为210 HV10,符合相关技术标准.该工艺方案经过国内北部地区长输管道的工程使用,质量合格;经过金相显微组织分析,在X60钢-20℃条件下焊接的接头中,未发现淬硬组织;对冲击试件断口形貌的扫描电镜分析表明,该环焊接头的韧性满足相关技术标准的要求.  相似文献   

19.
采用金属浸泡腐蚀试验、电化学腐蚀试验研究不同浓度或pH的HCl、NaOH、NaCl溶液对X90管线钢焊接接头(SMAW、GMAW、SAW)耐腐蚀性能的影响。结果表明:三种焊接接头的腐蚀速率随溶液浓度增加而增加,其中焊接接头对碱性环境耐蚀性较好,耐酸、盐类腐蚀性能较差,在较低浓度或pH下腐蚀接近轻度级别,SMAW焊接接头在pH=1的HCl溶液和5%的NaCl溶液中腐蚀达到重度级别。电化学腐蚀试验表明,SMAW试样自腐蚀电流最高,阻抗最低,三种焊接接头腐蚀均为重度级别,因此在强电解质溶液中建议采取保护措施。  相似文献   

20.
X65管线钢焊接接头CTOD断裂韧度   总被引:4,自引:1,他引:3       下载免费PDF全文
根据BS74 4 8断裂韧度试验标准 ,对X6 5管线钢焊接接头的低温 (0℃ )裂纹尖端张开位移 (CTOD)进行了测试。取尺寸为B× 2B(B为试样厚度 )、缺口方向为NP的试样进行三点弯曲试验 ,然后由所得到的 0℃下母材、焊缝和热影响区 (HAZ)的P -V曲线来计算CTOD值 ,并对试验结果进行了讨论和总结。对显微组织的分析表明 ,共有3个HAZ试件不满足裂纹尖端不超过熔合线 0 .5mm且落在粗晶区内的要求。该结果恰好与P -V曲线和所得的CTOD值相一致 ,从而解决了试验值分散性大的问题 ,同时为ECA评估提供了重要依据 ,验证了BS74 4 8标准的合理性并体现了它的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号