首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用双相区保温-淬火(IQ)、淬火-配分-贝氏体区等温(QPB)和双相区保温-淬火-配分-贝氏体区等温(IQPB)热处理工艺,研究C、Mn元素对残留奥氏体热稳定和机械稳定性的影响。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)和电子探针(EPMA)对试验钢的组织形貌、残留奥氏体含量及合金元素分布进行表征。结果表明,试验钢在双相区保温过程中C、Mn元素由铁素体向奥氏体扩散,在奥氏体发生富集,使奥氏体的热稳定性增强;在形变过程中由于C、Mn元素的稳定作用使残留奥氏体的机械稳定性提高。试验钢经IQPB工艺处理后,抗拉强度为1098 MPa,伸长率达20%,其强塑积达21 960 MPa·%,与QPB工艺相比,强塑积提高了6840 MPa·%。  相似文献   

2.
采用两相区保温-淬火-贝氏体区等温-淬火(IQPB)热处理工艺,通过SEM、TEM、XRD、EPMA、室温拉伸等手段,研究了两相区等温时间对低碳贝氏体/铁素体复相钢组织组成、合金元素分布、残留奥氏体形貌、含量及力学性能的影响。结果表明:随两相区等温时间的增加,铁素体逐渐增加,贝氏体逐渐减少;抗拉强度由1116 MPa降低至971 MPa,断后伸长率和残留奥氏体含量呈先升高后降低的趋势,残留奥氏体中的碳含量逐渐增加。由于在拉伸过程中,残留奥氏体发生TRIP效应转变为马氏体,试验钢的强度和塑性得到双重提高。经两相区等温15 min时,强塑积达29 925 MPa·%。  相似文献   

3.
采用QPB和IQPB工艺,研究低碳硅锰贝氏体钢经QPB和IQPB工艺处理后的组织性能。结果表明:试验钢通过两种工艺热处理后均得到粒状贝氏体和板条状贝氏体组织,且经IQPB工艺热处理后得到的板条状贝氏体更多;QPB工艺热处理后残留奥氏体量仅为8.19%,IQPB工艺热处理后残留奥氏体量高达12.08%。两种工艺下测试力学性能,IQPB试样的抗拉强度为900 MPa,伸长率高达27%,QPB试样的抗拉强度为920 MPa,伸长率为22%,经过两相区Mn配分强塑积提高4060 MPa·%。  相似文献   

4.
通过IQ(两相区退火+淬火)和IQP(两相区退火+淬火+配分)热处理工艺,采用EPMA、SEM和XRD等手段,研究含Cu低碳钢Cu配分行为及不同配分时间对组织性能的影响。结果表明,在双相区保温过程中,试验钢的C、Cu和Mn三种元素均从铁素体向奥氏体中配分,且Cu元素配分效果明显。经IQP工艺处理的钢的组织是板条马氏体和残余奥氏体,随着Cu配分时间增加,原始晶粒尺寸变大,马氏体组织变大、板条变粗。随着Cu配分时间增加,钢的抗拉强度逐渐减小,伸长率先增加后减小。残余奥氏体体积分数的变化趋势和伸长率的变化趋势基本一致,在配分时间为40 min时,残余奥氏体体积分数和伸长率达到最大值,此时材料综合力学性能最佳,抗拉强度为1076 MPa,强塑积达到26254.4 MPa·%。  相似文献   

5.
通过IQP(两相区退火+淬火+配分)热处理工艺,采用SEM和XRD等手段,研究了奥氏体化保温温度对低碳钢组织与性能的影响。结果表明:当奥氏体化温度AT升高到950℃时,双相区中产生的铁素体完全转变为奥氏体,得到的室温组织为马氏体;随着奥氏体化温度的升高,马氏体板条变粗大,板间距离变大,晶粒变大。当AT=930℃时,室温组织含有铁素体,Mn元素未能完全聚集到奥氏体晶粒中,此时伸长率最大(25.45%),抗拉强度最小(1084MPa),残余奥氏体量最小(7.02%)。当AT=950℃时,实现了完全奥氏体化,Mn元素富集程度最高,伸长率降低,抗拉强度和残余奥氏体量最大值分别是1267 MPa、9.83%。当AT=970℃,奥氏体中的Mn元素扩散均匀化,马氏体晶粒变大,板条间距变宽,伸长率达到最小值(23.2%),抗拉强度降低,残余奥氏体量降低8.87%。  相似文献   

6.
李晓磊  李云杰  康健  袁国  王国栋 《轧钢》2018,35(3):7-12
以低碳硅锰钢为研究对象,采用直接淬火-配分工艺研究了马氏体区淬火-配分(QP)、贝氏体区淬火-配分(BP)和直接淬火工艺对组织性能演变的影响。结果表明,经QP工艺处理后得到马氏体和残余奥氏体的组织,残余奥氏体体积分数大于10.0%,并且呈现薄膜状分布于马氏体板条间,试样屈服强度大于1 100 MPa,抗拉强度大于1 200 MPa,伸长率在14.75%~16.00%之间,强塑积可高达21.12GPa·%。经BP处理后的试样获得贝氏体基体和17.3%的残余奥氏体组织,试样伸长率高达21.00%,强塑积为22.26GPa·%。经直接淬火工艺处理后的试样,抗拉强度高达1 540 MPa,但残余奥氏体体积分数为3.6%,导致伸长率仅为8.00%,强塑积为12.32GPa·%。此外,还发现少量软相铁素体组织,可以降低试验钢的屈服强度。  相似文献   

7.
以低碳Si-Mn钢为研究对象,采用DIQPB(两相区形变+奥氏体化+贝氏体区淬火配分)与IQPB(两相区保温+奥氏体化+贝氏体区淬火配分)热处理工艺进行对比试验,研究预先高温形变热处理对残留奥氏体稳定性的提高作用。结果表明:降温过程中,贝氏体铁素体板条成批次、沿横向和纵向不断生成,残留奥氏体位于贝氏体板条间和晶界处,呈薄膜状、块状分布。EBSD和纳米压痕测试表明,一定压应力作用下,纳米压痕周围部分小块状残留奥氏体被保留,试验钢显微硬度位于1.20~1.39 GPa之间。预先高温形变热处理后贝氏体板条细化,残留奥氏体体积分数由10.41%增加到12.47%,残留奥氏体中碳含量由1.41%提高到1.56%。力学性能方面,相较于IQPB工艺,DIQPB工艺处理后试验用钢抗拉强度由1226 MPa提高到1260 MPa,断后伸长率由17.6%提高到22.0%,强塑积可达27 720 MPa·%。  相似文献   

8.
利用SEM、XRD分析及拉伸试验,研究了逆转变+淬火-配分(ART+QP)复合工艺对完全淬火后0.22C-2.0Mn-1.8Si钢组织性能的影响。结果表明:经ART+QP工艺处理后,该钢组织为亚温铁素体、贝氏体/马氏体和均匀分布的残留奥氏体。逆转变奥氏体富集Mn、C元素,淬火-配分过程中碳自马氏体配分至残留奥氏体时二次富C,使其稳定化,因此该钢室温下获得残留奥氏体的含量超过15%。在拉伸变形过程中残留奥氏体转变成马氏体的TRIP效应,使得钢材在变形过程中获得稳定的加工硬化能力,实现了良好的强塑性结合,抗拉强度达到1233 MPa,屈服强度为893 MPa,均匀伸长率29.6%,强塑积高达36 GPa·%以上。  相似文献   

9.
采用CCT-AY-Ⅱ热处理连退模拟机,研究了不同配分时间下,两相区退火温度淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用不同配分时间的两相区连续退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状或块状残留奥氏体;随配分时间的增加,钢的抗拉强度和残留奥氏体含量呈下降趋势,伸长率和强塑积呈上升趋势;当配分时间为300 s时,试验钢抗拉强度达到1000 MPa,其伸长率为27.3%,强塑积高达27 300 MPa.%。  相似文献   

10.
淬火配分( Quenching and partitioning ,Q&P)热处理工艺处理的钢种具有优异的强度和塑性配合。该热处理工艺涉及奥氏体化、淬火时马氏体形成、配分阶段的碳扩散和贝氏体相变。本文通过对实验室设计新型成分钢种进行Q&P热处理试验,分析了淬火配分过程的组织演变和力学性能变化规律。结果表明:两相区奥氏体化处理可以得到一定的铁素体组织,有利于钢的塑性提高,在完全奥氏体化后采用250℃的淬火配分温度进行一步Q&P热处理,其抗拉强度和伸长率分别达到1655 MPa和16.7%,采用250℃等温淬火和400℃×2 min的配分条件进行两步Q&P热处理得到的抗拉强度和伸长率分别为1118 MPa和19.1%,强度的变化主要受到马氏体基体脱碳软化和贝氏体组织形成的影响,伸长率随着组织中残留奥氏体的体积分数增加而提高。  相似文献   

11.
分析了淬火配分处理对锻态Fe-0.2C-9Mn-3.5Al钢显微组织及力学行为的影响。结果表明,热处理态试验钢主要由块状δ-铁素体、马氏体和板条状残留奥氏体等多相构成;残留奥氏体的体积分数随等温淬火温度升高而增大,在310 ℃时达到峰值;310 ℃等温淬火后在400 ℃配分3 min时可以获得较优的综合力学性能,抗拉强度和断后伸长率分别为1175 MPa和21.50%,强塑积达到25.26 GPa·%;应力-应变曲线中存在着明显的“锯齿”状起伏,可能与亚稳态的残留奥氏体集中转变为马氏体有关。  相似文献   

12.
《塑性工程学报》2016,(4):136-140
通过IQPB热处理工艺对实验钢进行不同淬火温度等温,采用场发扫描电镜(SEM)和X射线衍射仪(XRD)对组织进行观察,并分析实验钢的力学性能。结果表明,不同淬火温度下得到不同的组织和力学性能;淬火温度为380℃时,组织为板条贝氏体,随着淬火温度的升高,组织逐渐向粒状贝氏体转变,且粒状贝氏体存在两种形态,即铁素体基体上存在链状M/A岛和铁素体基体上分布着球状M/A组织;板条状贝氏体抗拉强度高达1 200MPa,但断后伸长率仅为18%,粒状贝氏体强度稍低,抗拉强度为940MPa~800MPa,但塑性较好,伸长率范围27%~30%,其强塑积≥24 000MPa·%,高于板条贝氏体。  相似文献   

13.
研究了两相区不同退火温度及不同配分温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构、力学性能及残留奥氏体含量的影响。结果表明,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体、薄膜状和块状残留奥氏体;随退火温度的升高,实验钢抗拉强度和屈服强度呈上升趋势,伸长率呈下降趋势,残留奥氏体含量先上升后下降;随配分温度的升高,实验钢抗拉强度呈下降趋势,屈服强度、伸长率和残留奥氏体含量呈上升趋势;经Q&P工艺处理后的实验钢强塑积可达28215 MPa·%。  相似文献   

14.
采用淬火-配分-贝氏体区等温(QPB)和双相区保温-淬火-配分-贝氏体区等温(IQPB)两种热处理工艺并进行对比,通过摩擦磨损试验来研究C、Mn元素对残留奥氏体稳定性的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)对试样的显微组织、残留奥氏体含量及C、Mn元素分布进行表征。结果表明:在双相区保温过程中,C、Mn元素发生配分,在奥氏体中富集。摩擦磨损试验后,QPB试样中的残留奥氏体体积分数从7. 24%减少到4. 36%,维氏硬度从417 HV0. 02增加到526 HV0. 02,磨损体积为0. 252 mm~3。IQPB试样中的残留奥氏体体积分数从9.11%减少到7.58%,维氏硬度从384 HV0.02增加到413 HV0. 02,磨损体积为0. 268 mm~3。IQPB试样在摩擦磨损试验前后残留奥氏体体积分数、维氏硬度没有QPB试样变化明显,表明在摩擦磨损过程中,C、Mn元素使残留奥氏体稳定性提高,残留奥氏体不易向马氏体转变。  相似文献   

15.
采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、电子探针(EPMA)、室温拉伸等研究了0.1C-7.2Mn钢两相区温轧淬火处理后合金元素配分对碳化物、残留奥氏体、力学性能及加工硬化行为的影响.结果 表明:随着退火时间的延长,经两相区保温后淬火(I&Q)处理的试验钢初始组织中多边形马氏体转变为板条状铁素体和奥氏体,铁素体沿长度方向长大变细;经两相区轧制保温后淬火(DI&Q)处理后,富C、富Mn碳化物先析出后溶解,同时铁素体回复多边化加剧,残留奥氏体由板条状逐渐转变为等轴状.相比I&Q处理,经DI&Q处理后,试验钢组织中富C区面积比由3.9%增加到8.7%,富Mn区面积比由0.9%增加到5.1%,残留奥氏体的含量由11.5%提高到17%,抗拉强度由1032.7 MPa提高到1171.5 MPa,断后伸长率由8.3%提高到15.8%,强塑积为18.5 GPa·%.  相似文献   

16.
采用盐浴对两种硅含量不同的试验钢进行了淬火配分处理,并用金相显微镜、扫描电镜与拉伸试验机对不同淬火温度下试验钢组织及性能的转变规律展开了研究。结果表明,试验钢的显微组织由铁素体、马氏体、残留奥氏体与贝氏体组成;硅含量增加,有利于试验钢中残留奥氏体体积分数提高,抗拉强度和屈服强度显著提高,伸长率降低,强度随淬火温度变化的幅度减小;经260 ℃淬火、360 ℃配分后,2.13%(质量分数)Si钢在拥有高强度的同时保持了较好的伸长率,其抗拉强度为958.66 MPa,屈服强度为458.99 MPa,伸长率为15.35%,强塑积为14.66 GPa·%,综合力学性能最佳。  相似文献   

17.
采用双相区保温+奥氏体化淬火+低温退火的热处理工艺,研究了合金元素配分行为对C-Si-Mn系高强钢微观组织和力学性能的影响.结果表明,在760℃随着保温时间的延长,双相区中奥氏体相的体积分数逐渐增多直至达到饱和,而铁素体向奥氏体扩散的Mn元素含量也逐渐增多直至在两相间达到化学势平衡,后加热至930℃保温120 s,再淬火至220℃,配分过程中发生了C从马氏体向奥氏体中的扩散偏聚.经该工艺处理后实验用钢的抗拉强度为1310 MPa,延伸率可达12%,强塑积达到15720 MPa·%,相比传统淬火+碳配分工艺,双相区保温+奥氏体化淬火+低温退火的热处理工艺过程中Mn配分和C配分共同作用能够显著提高钢中残余奥氏体的含量和稳定性,从而提高高强钢的室温成形能力.  相似文献   

18.
研究了第三代高强度高塑性低碳中锰冷轧TRIP钢的退火工艺对性能的影响和残留奥氏体稳定性。结果表明:临界区退火温度和保温时间对钢的力学性能具有显著影响,退火温度为590℃,保温时间为18 h时,实验用钢6.72%Mn-TRIP可获得815 MPa的抗拉强度和38%的断后伸长率,强塑积30 GPa·%;临界区保温时,C、Mn元素由马氏体配分到新形成的残留奥氏体,使残留奥氏体稳定在室温。大量残留奥氏体以及配分之后的马氏体和发生再结晶的铁素体,使材料具有良好的塑性和强度。  相似文献   

19.
采用双相区再加热-淬火-碳配分(IQP)工艺,研究了双相区不同等温时间下低碳钢中元素配分行为,并分析其对组织形貌、残余奥氏体及力学性能的影响。结果表明:在IQP工艺中,在750℃随等温时间的延长,Mn元素向逆转奥氏体内富集现象逐渐明显,等温时间超过300s后,C元素在两相之间的配分效果不随时间的延长而改变;在750℃等温处理过程中,原奥氏体晶界生成块状逆转奥氏体,马氏体板条界间生成针状逆转奥氏体;随等温时间的延长,钢的最终组织中针状铁素体体积分数不断减小,而块状及针状马氏体体积分数不断增大,同样残余奥氏体体积分数也不断增大;在C、Mn元素的综合作用下,钢的抗拉强度不断增大,断后伸长率先减小而后增大,等温1800s时,钢的强塑积达到最大值21GPa%。  相似文献   

20.
对传统淬火-配分钢(QP钢)添加合金元素Ni和Nb,并对实验钢采用两相区QP工艺处理,得到了一种超细晶QP钢,分析了实验钢的显微组织和力学性能。结果表明,该种成分钢得到了块状铁素体+块状马氏体+残留奥氏体的混合组织,且晶粒达到了亚微米级别。由于残留奥氏体的相变诱发塑性(TRIP)效应,使得实验钢获得了兼具强度和塑性的优异力学性能。在退火温度为690℃时,实验钢抗拉强度达到1195 MPa,断后伸长率为23.5%,强塑积达到28 GPa·%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号