首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一、前言本文根据国内外资料综述了球墨铸铁的氮化组织。介绍了氮化温度、氮化时间、氮势、基体组织、硅及合金元素对球铁氮化物层、扩散层的硬度、厚度的影响。列举了球铁氮化后的疲劳强度及耐磨性的有关数据。以前,在铁系合金中,氮化处理的材料仅限下含有Al、Cr、Ti等形成稳定氮化物的元素的氮化钢、铬钼钢、不锈钢等,对不含上述元素的碳钢及铸铁,用氮化提高其表面硬度是较困难的。与钢比较,铸铁氮化有  相似文献   

2.
秦文韬  满成  逄昆  张宏伟  崔中雨  王昕  崔洪芝 《表面技术》2023,52(9):125-134, 159
目的 钛合金的耐蚀性能好,但耐磨损性能较差,大大限制了钛合金在许多工业及医学领域的应用。通过对L-PBFTi6Al4V和轧制态Ti6Al4V合金在高纯氮气环境下进行氮化处理,探究氮化处理温度和原始组织差异对氮化处理结果及耐腐蚀磨损性能的影响。根据实验结果讨论不同氮化处理工艺下Ti6Al4V合金的组织演变,以及组织与腐蚀磨损的关系。方法 对轧制Ti6Al4V和L-PBF Ti6Al4V分别进行不同温度下的气体氮化处理,通过显微组织分析、力学性能测试、SEM、CLSM、腐蚀磨损测试等方法系统地研究氮化处理工艺对其耐腐蚀磨损性能的影响。结果 随着温度的升高,氮化物层和扩散层的厚度逐渐增加,氮化物主要由Ti N和Ti2N组成。经氮化处理后,L-PBF Ti6Al4V和轧制态Ti6Al4V合金的氮化物层厚度分别达到10.2、8.23μm,显微硬度分别达到1 251HV0.2、1 290HV0.2。合金的腐蚀磨损性能得到大幅提高,磨损与腐蚀之间的协同作用加速了材料的损失。未处理的Ti6Al4V合金的磨损类型以磨粒磨损为主,而经氮化处理后合金的磨损机制变为磨粒磨损与黏着磨损的组合。结论 轧制态Ti6...  相似文献   

3.
对Zr4合金分别进行离子氮化和软氮化处理,利用全自动金相显微镜对Zr4合金氮化层进行金相组织分析,利用扫描电镜对氮化层形貌进行观察,并测出氮化层厚度。利用X射线衍射仪对氮化层进行物相分析。利用显微硬度测试器测试氮化层的维氏硬度。结果表明:Zr4合金软氮化处理后氮化层比离子氮化层排列地更加紧密,软氮化层厚度为2.5μm,离子氮化层厚度为3.3μm。软氮化层的Zr和O化合物比离子氮化物衍射峰明显。软氮化的氮化层表面显微硬度达到641.7HV0.025,其硬度高于离子氮化处理后氮化层的表面显微硬度。  相似文献   

4.
SnCu钎料镀层与Cu/Ni镀层钎焊接头的界面反应   总被引:1,自引:1,他引:1  
观察了不同焊接工艺条件下钎焊接头界面的微观结构,并对钎焊过程中的界面反应进行分析。探讨了钎缝界面处IMC的生长机制,通过对不同钎焊温度和保温时间下的IMC生长规律的分析建立铜锡化合物厚度与温度和时间的关系方程。结果表明:钎焊过程中SnCu钎料合金镀层与可焊性Cu层的界面处生成金属间化合物Cu6Sn5和Cu3Sn;化合物的生长厚度与焊接时间之间满足抛物线关系,表明化合物的生长为扩散反应控制过程,并随焊接时间的延长化合物的生长速率逐渐下降。  相似文献   

5.
深层QPQ工艺参数对3Cr13钢渗层组织的影响   总被引:1,自引:0,他引:1  
蔡文雯  罗德福 《热加工工艺》2012,41(24):176-179
选用3Cr13马氏体不锈钢作为实验材料,利用深层QPQ盐浴复合处理处理技术,研究氮化温度、氮化时间和氰酸根浓度对QPQ复合处理后的渗层组织的影响.运用显微硬度计检测渗层的厚度和显微硬度值的变化,运用金相显微镜观察氮化后试样渗层的显微组织,检测化合物层的厚度和质量.结果表明:随氮化温度的升高或氮化时间的延长渗层深度增加;经630℃×2h氮化可形成深度高达97 μm的渗层组织;随氮化温度的升高,试样的表面硬度值在600℃后呈下降趋势,有疏松层的形成;氰酸根浓度对渗层的厚度影响显著,特别体现在扩散层的厚度上.而对试样表面硬度影响很小.  相似文献   

6.
采用不同时间对TC4钛合金进行真空渗氮处理。通过金相分析、X射线衍射(XRD)、显微硬度测试和耐磨试验研究了渗氮时间对渗氮层组织与性能的影响。结果表明:经820℃不同时间真空渗氮后,TC4钛合金表面物相主要以Ti N和Ti2Al N为主,渗氮初期,氮化物层厚度增加较快,随时间延长,氮化物层厚度增加速度逐渐减小,渗氮层深度与时间符合遵循抛物线规律。表面硬度及耐磨性随时间延长而增加,当渗氮时间达到10 h以后,表面硬度及耐磨性随时间延长基本保持不变,氮化物层厚度随时间延长继续增加。  相似文献   

7.
针对Ag-Cu合金内氧化动力学和内氧化后的组织进行研究。结果表明:内氧化后,在氧化温度和氧分压一定时,氧化层深度与氧化时间呈抛物线关系;在氧分压和氧化时间一定时,氧化层深度与氧化温度呈指数关系;在氧化时间和氧化温度一定时,氧化层深度lgE与lgPO2为线性关系。氧化温度不同时,Ag-Cu合金内氧化层组织不同;在相同氧化工艺条件下,内氧化层深度随溶质Cu含量的增加而减小。  相似文献   

8.
研究了不同软氮化处理温度与时间对新型高Cr热作模具钢表面渗层组织、厚度、硬度和冲击韧度的影响规律。结果表明,随软氮化温度的升高和软氮化时间的延长,渗层厚度逐渐增加,硬度和冲击韧度提高。  相似文献   

9.
采用高压直流等离子体氮化技术,对医用锻造钴铬钼合金进行表面氮化处理,考察了氮化温度及时间对钴铬钼合金摩擦性能及润湿性能的影响。运用X射线衍射仪及场发射扫描电镜分析氮化层物相组成及表面微观结构;用显微硬度计和光学动/静态接触角仪测试合金表面显微硬度及接触角数值;利用球-盘摩擦试验机在干摩擦条件下对氮化层的摩擦磨损性能进行测试。结果表明:钴铬钼合金试样经直流等离子体氮化处理后,氮化层厚度、表面粗糙度及显微硬度值显著增加,亲水性能及耐磨损性能得到明显改善。在较低的氮化温度及较短的氮化时间内,氮化试样物相主要由σ-CoCr相及CrN相组成;随着氮化温度及时间的增加,氮化试样物相中还检测到硬质化合物相Cr_2N。与未处理试样相比,氮化试样的磨损率及磨痕宽度减小,氮化参数为800°C/8 h时磨损率最低,磨痕宽度最窄,耐磨损性能最佳。  相似文献   

10.
马跃林 《热加工工艺》2014,(6):203-204,208
选用35钢作为研究材料,进行不同工艺条件的QPQ盐浴复合处理,研究氮化温度(530~575℃)和氮化时间(3~5 h)对35钢组织及表面性能的影响。结果表明,35钢在QPQ处理后表面由外到内可形成明显的白亮层和扩散层,且渗层厚度随氮化温度升高和氮化时间的延长而增大。  相似文献   

11.
采用高压直流等离子体氮化技术,对医用锻造钴铬钼合金进行表面氮化处理,考察了氮化温度及时间对钴铬钼合金摩擦性能及润湿性能的影响。运用XRD衍射仪及场发射扫描电镜分析氮化层物相组成及表面微观形貌;显微硬度计和光学动/静态接触角仪测试合金表面显微硬度及接触角数值;利用球-盘摩擦实验在干摩擦条件下对氮化层的摩擦磨损性能进行测试。实验结果表明:钴铬钼合金试样经直流等离子体氮化处理后,氮化层厚度、表面粗糙度及显微硬度值显著增加,亲水性能及耐磨损性能得到明显改善。在较低的氮化温度及较短的氮化时间内,氮化试样物相主要由σ-CoCr相及CrN相组成;随着氮化温度及时间的增加,氮化试样物相中还检测到硬质化合物相Cr2N。同未处理试样相比,氮化试样的磨损率及磨痕宽度减小,氮化参数为800℃-8h时磨损率最低,磨痕宽度最窄,耐磨损性能最佳。未氮化试样磨损机制以粘着磨损为主;氮化试样主要以疲劳磨损、磨粒磨损及轻微粘着磨损为主。  相似文献   

12.
18Cr2Ni4WA钢氮化层强化机理的研究   总被引:1,自引:0,他引:1  
本文应用薄膜透射电镜方法对经不同温度一段及二段氮化后的18Cr2Ni4WA钢的内氮化层显微组织及其强化本质进行了研究.结果表明,该钢内氮化层形成过程可分为二个阶段:1.合金元素及氮原子在铁素体基体{100}α面上形成有序化的混合偏聚区;2.由偏聚区转变成平衡沉淀相CrN,它与基体的位相关系符合Baker-Nutting关系:(001)_(CrN)∥(001)α;[110]CrN∥[100]α在较低温度氮化时,CrN还可由碳化物转变而成.造成内氮化层高硬度的主要原因是铁素体基体内形成弥散的有序化混合偏聚区.在420—500℃氮化的条件下,内氮化层强度达最高值.随氮化温度升高,其硬度逐渐下降.采用低温 高温二段氮化时,由于低温形成的有序化偏聚区相当稳定,从而使氮化层的高硬度能保持到较高的温度,所以二段氮化在保持内氮化层高硬度的同时可以加速氮化过程,缩短氮化时间.  相似文献   

13.
对用高频感应氮化技术在Ti6Al4V合金表面生成氮化膜的工艺进行了研究,测试并分析了不同处理温度和氮化时间对氮化膜生长速度、显微硬度的影响.研究证实:在860~1160℃的温度范围内,膜层的厚度和显微硬度均随着处理温度的升高和氮化时间的延长而增加.XRD分析证实膜层结构主要由TiN和Ti2N组成.  相似文献   

14.
本文应用薄膜透射电镜方法对经不同温度一段及二段氮化后的18Cr2Ni4WA钢的内氮化层显微组织及其强化本质进行了研究.结果表明,该钢内氮化层形成过程可分为二个阶段:1.合金元素及氮原子在铁素体基体{100}α面上形成有序化的混合偏聚区;2.由偏聚区转变成平衡沉淀相CrN,它与基体的位相关系符合Baker-Nutting关系:(001)_(CrN)∥(001)α;[110]CrN∥[100]α在较低温度氮化时,CrN还可由碳化物转变而成.造成内氮化层高硬度的主要原因是铁素体基体内形成弥散的有序化混合偏聚区.在420—500℃氮化的条件下,内氮化层强度达最高值.随氮化温度升高,其硬度逐渐下降.采用低温+高温二段氮化时,由于低温形成的有序化偏聚区相当稳定,从而使氮化层的高硬度能保持到较高的温度,所以二段氮化在保持内氮化层高硬度的同时可以加速氮化过程,缩短氮化时间.  相似文献   

15.
采用测定高温下保温不同时间后氧化层厚度的方法讨论分析了Fe-40%Ni合金的高温氧化行为,并通过回归分析得到了预测氧化层厚度的数学模型。结果表明,当温度低于1000 ℃时,合金氧化层增加的趋势相对较缓,超过1000 ℃后显著加快。随保温时间的延长,氧化层厚度以一定的速度增加,并与保温时间呈近似线性的关系,而当温度较高时则逐渐向抛物线型转变。回归分析表明,合金的氧化层厚度(μm)可用h=6700×t0.44×e-6870/T计算。  相似文献   

16.
1.序言氮化零件的表面硬度和氮化层内的硬度分布取决于钢中的合金元素含量和氮化工艺参数,如氮化温度、氮化时间和氮化介质的种类。在氮化的早期研究中,Fry 和其他一些人就己指出了钢的成份的影响。同样,很早就开始了关于氮化层的硬度与氮化温度、氮化时间的关系的研究工作。从对许多钢的新近的研究中,可以清楚地看出在觇定的温度下氮化时间的影响。而氮化温度和钢的成份对氮化层硬度的  相似文献   

17.
从热力学和扩散理论上探究了低碳钢气体渗氮氮化势对渗氮化合物层的影响。采用光学显微镜、扫描电镜、X射线衍射仪、电子探针、显微硬度计和电化学分析仪对渗氮层进行表征。结果表明:气体渗氮气氛中的氮化势对化合物层的影响规律随渗氮温度的改变有所不同。当渗氮温度不高于550℃时,高氮化势显著增加化合物层厚度;当渗氮温度不低于580℃时,尽管低氮化势延迟化合物层的形成,但化合物层一旦形成就快速增厚,且其厚度达到甚至超过高氮化势下化合物层的厚度。高氮化势渗氮化合物层中N浓度随深度降低,其最外层N浓度高达10 mass%;低氮化势渗氮化合物层中N浓度分布均匀,大约为5 mass%-6 mass%。高氮化势渗氮化合物层的耐蚀性较好,韧性和致密性较差。低氮化势渗氮化合物层缺陷较少,韧性较高。  相似文献   

18.
从热力学和扩散理论上探究了低碳钢气体渗氮氮化势对渗氮化合物层的影响。采用光学显微镜、扫描电镜、X射线衍射仪、电子探针、显微硬度计和电化学分析仪对渗氮层进行表征。结果表明:气体渗氮气氛中的氮化势对化合物层的影响规律随渗氮温度的改变有所不同。当渗氮温度不高于550℃时,高氮化势显著增加化合物层厚度;当渗氮温度不低于580℃时,尽管低氮化势延迟化合物层的形成,但化合物层一旦形成就快速增厚,且其厚度达到甚至超过高氮化势下化合物层的厚度。高氮化势渗氮化合物层中N浓度随深度降低,其最外层N浓度高达10 mass%;低氮化势渗氮化合物层中N浓度分布均匀,大约为5 mass%~6 mass%。高氮化势渗氮化合物层的耐蚀性较好,韧性和致密性较差。低氮化势渗氮化合物层缺陷较少,韧性较高。  相似文献   

19.
对硼铸铁分别在540、560、580℃下采用1.5、2.5、3.5、4.5 h的渗氮时间进行QPQ盐浴氮化处理,用电子显微镜观察了盐浴氯化后的金相组织,测试了氮化层厚度,并通过划痕硬度试验、显微硬度试验、耐腐蚀试验和磨损试验,测试了试样经QPQ盐浴氮化的硬度、耐腐蚀性和耐磨性.结果表明,随着氮化时间的增长和氮化温度的提高,氮化层厚度随之增加,硼铸铁经QPQ盐浴复合处理后试样表面形成高硬度、高耐磨性能的氮化物层,组织和性能稳定,表层硬度、耐腐蚀性和耐磨性明显提高.与未处理试样相比显微硬度提高了77.38%,耐磨性提高4.2倍,耐腐蚀性能提高600倍.QPQ盐浴氮化处理是提高硼铸铁硬度、耐磨性和使用寿命的有效手段.  相似文献   

20.
在不同的温度和时间下对Sm2Fe17合金进行氮化处理,利用Kerr显微镜和透射电镜(TEM)观察磁畴及氮化层,氮化处理之前在Sm2Fe17合金中观察不到磁畴,但在氮化处理后可观察到许多磁畴及裂纹。氮化层的厚度约10μm。通过扫描电镜(SEM),俄歇电镜(SAM)以及电子探针微区分析(EPMA)对合金进行了定性,半定性和定量的成分分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号